首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Catabolite repression of the lac operon. Repression of translation   总被引:3,自引:2,他引:1  
  相似文献   

4.
5.
6.
The genes coding for the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter strain AR50 were cloned and partially sequenced. A novel lac operon was identified which contains genes coding for a lactose-binding protein (lacE), two integral membrane proteins (lacF and lacG), an ATP-binding protein (lacK) and beta-galactosidase (lacZ). The operon is transcribed in the order lacEFGZK. The operon is controlled by an upstream regulatory region containing putative -35 and -10 promoter sites, an operator site, a CRP-binding site probably mediating catabolite repression by glucose and galactose, and a regulatory gene (lacl) encoding a repressor protein which mediates induction by lactose and other galactosides in wild-type A. radiobacter (but not in strain AR50, thus allowing constitutive expression of the lac operon). The derived amino acid sequences of the gene products indicate marked similarities with other binding-protein-dependent transport systems in bacteria.  相似文献   

7.
8.
9.
Glucose-lactose diauxie in Escherichia coli   总被引:10,自引:3,他引:7  
Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(+) strain. Studies on the induction of beta-galactosidase by lactose suggested that glucose inhibits induction by 10(-2)m lactose. Preinduction of the lac operon was found to overcome this effect. The ability of glucose to prevent expression of the lac operon by reducing the internal concentration of inducer as well as by catabolite repression is discussed.  相似文献   

10.
11.
12.
13.
14.
Strains were constructed that contain mutational alterations affecting two distinct functional domains within the araC gene protein. The araCi (catabolite repression insensitivity) and araCh (catabolite repression hypersensitivity) mutations were used to alter the catabolite repression sensitivity domain, and mutation to D-fucose resistance was used to alter the inducer binding domain. araCh, D-fucose-resistant double mutants never exhibited constitutive ara operon expression, whereas all of the araCi, D-fucose-resistant double mutants did exhibit constitutivity. When L-arabinose was used as an inducer, most of the double mutants exhibited the sensitivity to catabolite repression associated with the araCi or araCh mutation. However, when D-fucose was used as an inducer, changes in sensitivity to catabolite repression were observed that were attributed to interactions between the two protein domains. The roles of catabolite activator protein and araC gene protein in the induction of the araBAD operon were discussed.  相似文献   

15.
Inducer exclusion was not important in catabolite repression of the Bacillus subtilis gnt operon. The CcpA protein (also known as AlsA) was found to be necessary for catabolite repression of the gnt operon, and a mutation (crsA47, which is an allele of the sigA gene) partially affected this catabolite repression.  相似文献   

16.
17.
18.
19.
20.
The complete nucleotide sequences of lacRABCDF and partial nucleotide sequence of lacE from the lactose operon of Streptococcus mutans are presented. Comparison of the streptococcal lac determinants with those of Staphylococcus aureus and Lactococcus lactis indicate exceptional protein and nucleotide identity. The deduced polypeptides also demonstrate significant, but lower, sequence similarity with the corresponding lactose proteins of Lactobacillus casei. Additionally, LacR has sequence homology with the repressor (DeoR) of the Escherichia coli deoxyribonucleotide operon, while LacC is similar to phosphokinases (FruK and PfkB) from E. coli. The primary translation products of the lacRABCDFE genes are polypeptides of 251 (M(r) 28,713), 142 (M(r) 15,610), 171 (M(r) 18,950), 310 (M(r) 33,368), 325 (M(r) 36,495), 104 (M(r) 11,401), and 123 (NH2-terminal) amino acids, respectively. As inferred from their direct homology to the staphylococcal lac genes, these determinants would encode the repressor of the streptococcal lactose operon (LacR), galactose-6-phosphate isomerase (LacA and LacB), tagatose-6-phosphate kinase (LacC), tagatose-1,6-bisphosphate aldolase (LacD), and the sugar-specific components enzyme III-lactose (LacF) and enzyme II-lactose (LacE) of the S. mutans phosphoenolpyruvate-dependent phosphotransferase system. The nucleotide sequence encompassing the S. mutans lac promoter appears to contain repeat elements analogous to those of S. aureus, suggesting that repression and catabolite repression of the lactose operons may be similar in these organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号