首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix.It has long been known that starch granules contain bound polypeptides, with protein levels of isolated starch granules from maize (Zea mays) ranging from 0.3 to 1.0% based upon measurement of N2 (May, 1987). A recent study by our laboratory demonstrates that isolated starch granules from maize contain several dozen strongly bound polypeptides (Mu-Forster et al., 1996). The granule-associated proteins include starch-biosynthetic enzymes such as the waxy protein, SSI, and SBEIIb. These polypeptides are not removed from intact starch granules by protease treatment or detergent washing; therefore, they are believed to bind to the starch and to become irreversibly entrapped within the starch matrix.Based upon staining intensities of polypeptides extracted from the starch granule (Mu-Forster et al., 1996), approximately one-half of the granule-associated proteins in maize consist of low-molecular-mass polypeptides ranging between 10 and 27 kD. These bands fall within the size range displayed by the zein storage proteins, however, the spatial distribution of these polypeptides within the starch granule is unknown. Zeins have been defined as alcohol-soluble proteins that occur principally in protein bodies of maize endosperm and that may or may not require reduction before extraction (Wilson, 1991). The association of zeins with starch granules during endosperm development would not be expected because zein genes do not contain transit peptides that would target these proteins through the amyloplast envelope into the amyloplast stroma.The objective of this study was to establish the topology of granule-associated zeins in starch granules from maize endosperm. To accomplish this, it was necessary to distinguish between surface-localized and internalized polypeptides. Our working hypothesis defines polypeptides localized at the starch granule surface as those that are susceptible to hydrolysis upon treatment of intact granules with exogenous proteases. Conversely, internal granule proteins are defined as those that (a) become susceptible to proteolysis only following thermal disruption of the starch matrix, and (b) resist extraction by 2% SDS at room temperatures (Denyer et al., 1993; Rahman et al., 1995; Mu-Forster et al., 1996).In this study we were able to distinguish between surface-localized and internalized granule-associated polypeptides in starch granules from maize endosperm by use of the thermophilic protease thermolysin. Thermolysin is well suited for this purpose because it is highly active at starch-gelatinization temperatures, and has also been shown to effectively hydrolyze hydrophobic proteins located at the surfaces of chloroplasts and other subcellular organelles (Cline et al., 1984; Xu and Chitnis, 1995). Upon extended incubation of intact starch granules with thermolysin at subgelatinization temperatures, we found that zeins were selectively removed from the starch granule surface. All other granule-associated polypeptides remained inaccessible to proteolytic attack or to extraction by 2% SDS, unless the starch matrix was first disrupted by gelatinization. Our results distinguish between the surface-localized and granule-intrinsic proteins of maize endosperm, and establish that zeins are localized at the starch-granule surface. In addition, cross-linking experiments were conducted to determine nearest-neighbor relationships among zein subunits localized at the granule surface and granule intrinsic polypeptides localized within the starch matrix.  相似文献   

2.
Polypeptides of spinach chloroplast envelopes were separated by electrophoresis in an SDS-polyacrylamide gradient gel. At least 37 polypeptides were resolved; nine were prominent. Two (Mr 54 000 and 16 000) were also found in the stroma fraction and identified by peptide mapping and isoelectric focusing in the second dimension as the large and small subunits of ribulose-1,5-bisphosphate carboxylase. Proteins of the chloroplast envelope were also separated by isoelectric focusing. An adaptation of a previous method (Ames, G.F.L. and Nikaido, K. (1976) Biochemistry 15, 616ndash;623), using solubilization in SDS and isoelectric focusing in the presence of a high concentration of Nonidet P-40, gave the best separation and resolved the envelope membranes into at least 21 proteins. The major band (pI 6.85) contained both subunits of the carboxylase and at least two additional polypeptides which corresponded to the prominent bands found in SDS gel electrophoresis of chloroplast envelopes.  相似文献   

3.
The Zn-proteinase, isolated from Saccharomonosporacanescens (NPS), shares many common features with thermolysin, but considerable differences are also evident, as far as the substrate recognition site is concerned. In substrates of general structure AcylAlaAlaPhe 4NA, this neutral proteinase cleaves only the arylamide bond (non-typical activity of Zn-proteinases), while thermolysin attacks the peptide bond Ala-Phe. Phosphoramidon is a powerful tight binding inhibitor for thermolysin and significantly less specific towards NPS. The Ki-values (65 μM for NPS vs 0.034 μM for thermolysin) differ nearly 2000-folds. This implies significant differences in the specificity of the corresponding subsites. The carbohydrate moiety is supposed to accommodate in the S1-subsite and the series of arabinopyranosides and glucopyranosides (12 compounds), which are assayed as inhibitors in a model system: NPS with SucAlaAlaPhe4NA as a substrate could be considered as mapping the S1-subsite of NPS. Members of the series with an additional ring (3,4-epithio, 3,4-anhydro-derivatives) turned out to be reasonably good competitive inhibitors (Ki ≈ 0.1-0.2 mM are of the same order as the Ki value for phosphoramidon). The structure of these compounds (8, 9, 11 and 12) seems to fit the size of the S1-subsite and due to an appropriately oriented OH-group in addition, to protect the active site Zn2+.  相似文献   

4.
The protein composition of the envelope fraction of Pseudomonas BAL-31 was studied by polyacrylamide gel electrophoresis. Two major polypeptides of molecular weights 130 000 and 110 000 were found. These two polypeptides, which account for as much as 40–50% of the total protein of the envelope, are associated with the outer membrane. One of these proteins might be a glycoprotein. The inner membrane contains a more heterogeneous collection of smaller polypeptides.  相似文献   

5.
The eyespot apparatus (EA) of Chlamydomonas reinhardtii P. A. Dang. consists of two layers of carotenoid‐rich lipid globules subtended by thylakoids. The outermost globule layer is additionally associated with the chloroplast envelope membranes and the plasma membrane. In a recent proteomic approach, we identified 202 proteins from isolated EAs of C. reinhardtii via at least two peptides, including, for example, structural components, signalling‐related proteins, and photosynthetic‐related membrane proteins. Here, we have analyzed the proteins of the EA with regard to their topological distribution using thermolysin to find out whether the arrangement of globules and membranes provides protection mechanisms for some of them. From about 230 protein spots separated on two‐dimensional gels, the majority were degraded by thermolysin. Five major protein spots were protected against the action of this protease. These proteins and some that were degradable were identified by mass spectrometry. Surprisingly, the thermolysin‐resistant proteins represented the α and β subunits of the soluble CF1 complex of the chloroplast ATP synthase. Degradable proteins included typical membrane proteins like LHCs, demonstrating that thermolysin is not in general sterically prevented by the EA structure from reaching membrane‐associated proteins. A control experiment showed that the CF1 complex of thylakoids is efficiently degraded by thermolysin. Blue native PAGE of thermolysin‐treated EAs followed by SDS‐PAGE revealed that the α and β subunits are present in conjunction with the γ subunit in a thermolysin‐resistant complex. These results provide strong evidence that a significant proportion of these ATP‐synthase subunits have a specialized localization and function within the EA of C. reinhardtii.  相似文献   

6.
Phosphoramidon, N-(α-l-rhamnopyranosyloxyhydroxyphosphinyl)-l-leucyl-l-tryptophan, and its analog, N-phosphoryl-l-leucyl-l-tryptophan, inhibited thermolysin in a competitive manner and Ki values were calculated to be 2.8 × 10?8 and 2.0 × 10?9m, respectively. The l-rhamnose moiety in phosphoramidon was suggested to be not involved in inhibition of thermolysin. A phosphoramidon analog containing histidine instead of tryptophan showed weaker inhibition. Spectrophotometric titration based on difference ultraviolet absorption spectra of the enzyme-inhibitor complex showed equimolar binding of the inhibitor to the enzyme.  相似文献   

7.
Although structural studies support the hypothesis that the sea urchin embryo fertilization envelope is derived from the preexisting vitelline envelope template and structural proteins secreted during the cortical reaction, biochemical evidence is minimal. We used an immunological approach to determine the subcellular origin of proteins which were extracted from the fertilization envelope. Fertilization envelopes were isolated from Stronglyocentrotus purpuratus embryos 30 min postinsemination and extracted with 6.0 M urea-0.15 M 2-mercaptoethanol, pH 10.5, for 10 min at 80°C. Extracted proteins were exhaustively dialyzed against 0.015 M 2-mercaptoethanol-0.100 M Tris-HCl at pH 8.6 and mixed with Fruend's complete adjuvant prior to injection into female New Zealand white rabbits. The antiserum which was prepared contained antibodies to six major and two minor polypeptides in the soluble fertilization envelope fraction based on two-dimensional sodium dodecyl sulfate immunoelectrophoresis. Extracts of vitelline envelopes and extracts of unfertilized egg surfaces which are known to contain viteline envelope proteins did not form immunoprecipitates with antiserum against soluble fertilization envelope polypeptides. Extracts of isolated cortical granules and the secreted paracystalline protein fraction formed four and three immunoprecipitates, respectively, which showed complete identity with the soluble fertilization envelope polypeptides based on rocket-line immunoelectrophoresis. Two-dimensional sodium dodecyl sulfate immunoelectrophoresis of cortical granule extract and the secreted paracrystalline protein fraction showed a complex pattern of immunoprecipitates, but a major finding was that cortical granules contain a 193,000-dalton polypeptide which was not found in the paracrystalline protein fraction. These results suggest that proteolytic processing of a cortical granule precursor of the paracrystalline protein fraction occurs during fertilization and that not all of the cortical granule polypeptides are incorporated into the fertilization envelope by means of di- and trityrosine crosslinks with the vitelline envelope proteins.  相似文献   

8.
The three predominant polypeptides of the insoluble proteinaceous fraction from the HeLa cell nucleus polymerize in vitro upon oxidation of intrinsic sulfhydryl groups. The ease and specificity of this reaction indicate that these polypeptides exist as ordered oligomers in vivo. The comparable insoluble fraction from the rat liver nucleus also contains three predominant polypeptides of the same molecular weights, 65,000 71,000, and 75,000. The insoluble protein of the avian erythrocyte nuclear envelope consists principally of the 71,000- and the 75,000-dalton polypeptides. Indeed, in the avian erythrocyte nucleus these are the predominant polypeptides of the entire nucleus (Shelton, K., Cobbs, C., Povlishock, J. and Burkat, R., 1976, Arch. Biochem. Biophys.174, 177). Further, these avian polypeptides each form homogeneous covalently linked oligomers upon sulfhydryl oxidation (Cochran, D., Cobbs, C. and Shelton, K., 1977, J. Cell Biol.75, 151a). The insolubility, oligomeric disposition, and relative prominence of these polypeptides in a wide variety of cells indicate a fundamental structural role in the nucleus. Morphological features which may reflect this structural or skeletal role could be the nuclear envelope, the fibrous lamina, or perhaps an intrachromatinic matrix. The metabolism of the oligomeric polypeptides has been investigated in HeLa cells. Turnover of the HeLa insoluble nuclear protein is similar to that of the histones which are known to be stable proteins. The insoluble protein, including the oligomeric polypeptides, is synthesized in G1, S, and G2 phases of the cell cycle. This metabolic behavior indicates that the oligomeric polypeptides are reutilized in successive cell cycles and that synthesis accompanies nuclear and cellular expansion rather than deoxyribonucleohistone synthesis. This suggests that neither degradation nor selective synthesis of oligomeric polypeptides at a particular phase of the cell cycle are responsible for the breakdown and reformation of the interphase cell morphological features that occur during mitosis.  相似文献   

9.
Nuclear envelopes from oocytes of Xenopus laevis are rich in pore complexes and contain a major polypeptide of apparent molecular weight (Mr) 68,000. A rapid extraction procedure using buffer containing 1% (vv) Triton X-100 and 1.0 m-KCl allows the preparation of insoluble nuclear envelope skeletons showing only residual pore complex structures, with some interconnecting filament material, and one major polypeptide; i.e. that of Mr 68,000. This skeletal protein, which is not found in nuclear contents, reveals, on two-dimensional gel electrophoresis, a series of distinct isoelectric variants focusing in the pH range from 6.4 to 6.6. In living oocytes, this protein is continuously synthesized, as demonstrated by incorporation of labelled amino acids, and phosphorylated, A similar prominent skeletal protein has been found in nuclear envelopes of oocytes of other amphibia; however, slight but significant differences in electrophoretic mobility can be noted between different amphibian species.For comparison, nucleocortical lamina structures containing few pore complexes have been isolated, using similar extraction procedures, from various somatic cells of X. laevis, including erythrocytes. Laminae from these cells contain two major polypeptides, one (LI) of Mr 72,000 focusing at approximately pH 5.35 and another (LII) of Mr 69,000 focusing in several variants between pH 6.20 and 6.35. Similarly extracted “pore complex-lamina” fractions from rat liver contain a polypeptide of similar size and electrical charge as protein LI from Xenopus and, in addition, two other polypeptides (Mr values: 74,000 and 62,000) both focusing between pH 6.6 and 6.9.It is concluded that the pore complex-lamina structure of the oocyte nucleus is assembled by only one major protein of Mr 68,000. The results also show that the protein composition of this insoluble nucleocortical structure can be different in different cells of the same organism. The compositional differences of these nuclear envelope skeletons are discussed in relation to the relative proportions of pore complex and interporous (lamina) material in the nuclear envelopes of the specific cells. It is suggested that the Mr 68,000 protein predominant in oocyte nuclear envelopes contributes, as an architectural component, to the formation of the highly organized nuclear pore complex.  相似文献   

10.
Unicellular green algae have a mechanism for concentrating dissolved inorganic carbon (DIC) only when grown in low CO2. To find proposed transporter protein(s) for DIC, we isolated intact chloroplasts from Dunaliella tertiolecta cells, separated the chloroplast envelopes by isopyknic centrifugation, and separated their polypeptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two peptides of apparent molecular masses of 45 and 47 kD were constituents of the inner chloroplast envelope only if the cells had been adapted to low CO2 in the light or grown in low CO2. These two low CO2-induced peptides appear to be part of the algal DIC pump.  相似文献   

11.
Protein has been selectively extracted from isolated chicken erythrocyte nuclear envelope by (1) dilute MgCl2/Triton X-100 followed by (2) concentrated MgCl2/Triton X-100 solutions. Certain proteins appear to be selectively dissolved in the first solvent and may occur in the nuclear envelope primarily as lipoproteins. Among the proteins insoluble in the low MgCl2/Triton X-100 wash, as well as in 500 mM MgCl2 without Triton previously used in the preparation of the envelope fraction, the quantitatively major polypeptides dissolve in a combination of high MgCl2 and Triton X-100. Further, much of this dissolved protein precipitates when the MgCl2 concentration is lowered by dialysis. The insolubility of these proteins appears to result from a combination of ionic and hydrophobic interactions and may explain the resistance of nuclei to various manipulative procedures including nonionic detergent washes. The procedures described provide a route for gently and selectively dissolving representative proteins from the nuclear envelope lipoprotein matrix and from the envelope “residual” protein.  相似文献   

12.
BackgroundDifferential scanning calorimetry is a powerful method that provides a complete thermodynamic characterization of the stability of a protein as a function of temperature. There are, however, circumstances that preclude a complete analysis of DSC data. The most common ones are irreversible denaturation transitions or transitions that take place at temperatures that are beyond the temperature limit of the instrument. Even for a protein that undergoes reversible thermal denaturation, the extrapolation of the thermodynamic data to lower temperatures, usually 25 °C, may become unreliable due to difficulties in the determination of ΔCp.MethodsThe combination of differential scanning calorimetry and isothermal chemical denaturation allows reliable thermodynamic analysis of protein stability under less than ideal conditions.Results and conclusionsThis paper demonstrates how DSC can be used in combination with chemical denaturation to address three different scenarios: 1) estimation of an accurate ΔCp value for a reversible denaturation using as a test system the envelope HIV-1 glycoprotein gp120; 2) determination of the Gibbs energy of stability in the region in which thermal denaturation is irreversible using HEW lysozyme at different pH values; and, 3) determination of Gibbs energy of stability for a thermostable protein, thermolysin. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

13.
We have developed a reliable procedure for the purification of envelope membranes from cauliflower (Brassica oleracea L.) bud plastids and sycamore (Acer pseudoplatanus L.) cell amyloplasts. After disruption of purified intact plastids, separation of envelope membranes was achieved by centrifugation on a linear sucrose gradient. A membrane fraction, having a density of 1.122 grams per cubic centimeter and containing carotenoids, was identified as the plastid envelope by the presence of monogalactosyldiacylglycerol synthase. Using antibodies raised against spinach chloroplast envelope polypeptides E24 and E30, we have demonstrated that both the outer and the inner envelope membranes were present in this envelope fraction. The major polypeptide in the envelope fractions from sycamore and cauliflower plastids was identified immunologically as the phosphate translocator. In the envelope membranes from cauliflower and sycamore plastids, the major glycerolipids were monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and phosphatidylcholine. Purified envelope membranes from cauliflower bud plastids and sycamore amyloplasts also contained a galactolipid:galactolipid galactosyltransferase, enzymes for phosphatidic acid and diacylglycerol biosynthesis, acyl-coenzyme A thioesterase, and acyl-coenzyme A synthetase. These results demonstrate that envelope membranes from nongreen plastids present a high level of homology with chloroplasts envelope membranes.  相似文献   

14.
Proteins of Toxoplasma gondii were separated by SDS-polyacrylamide gel electrophoresis with subsequent transfer to a nitrocellulose sheet by electrophoretic blotting. Immunologically reactive polypeptides were detected by human sera with previously known toxoplasma antibody levels. Heavy chain-specific, peroxidase-conjugated anti-human immunoglobulins were used as the indicator antibodies for the separate identification of IgG and IgM reactive polypeptides. IgG toxoplasma antibodies reacted with several antigens of Mr ≈27 000–67 000, while toxoplasma-specific IgM seemed to detect only a few polypeptides. The Mr of 35 000 for the dominating IgM reactive polypeptide was observed.  相似文献   

15.
Y I Henis  T M Jenkins 《FEBS letters》1983,151(1):134-138
The subunit stoichiometry of the ATP synthetase (CF1-CF0) immunoprecipitated from Triton X-100 extracts of chloroplast thylakoid membranes was determined to be α3, β3, γ, δ, ? (CF1) and I0.3, II0.6–0.9, III4(6) (CF0). Antibodies against the polypeptides α, β, γ, δ, I, II and ? combined specifically with the isolated subunits as analysed by the protein blotting method. Applying this technique, antibodies against the CF1 subunits were found to form complexes with the corresponding polypeptides of thylakoids, whereas those against I (Mr 20 000) and II (Mr 17 000) combined with Mr 26 000 and Mr 24 500 membrane polypeptides, respectively. The Mr 26 000 polypeptide was identified as the major subunits of the light-harvesting chlorophyll a/b-protein (LHCP) complex and the Mr 24 500 component seems to be functionally connected with this complex. From the results it is concluded that the chloroplast ATP synthetase consists of the subunit of the α, β, γ, δ, ? and III (proteolipid only and that proteolytically altered LHCP polypeptides bind artifically to the protein complex during isolation.  相似文献   

16.
Neutral salts activate and stabilize thermolysin. In this study, to explore the mechanism, we analyzed the interaction of 8-anilinonaphthalene 1-sulphonate (ANS) and thermolysin by ANS fluorescence. At pH 7.5, the fluorescence of ANS increased and blue-shifted with increasing concentrations (0–2.0?μM) of thermolysin, indicating that the anilinonaphthalene group of ANS binds with thermolysin through hydrophobic interaction. ANS did not alter thermolysin activity. The dissociation constants (Kd) of the complex between ANS and thermolysin was 33?±?2?μM at 0?M NaCl at pH 7.5, decreased with increasing NaCl concentrations, and reached 9?±?3?μM at 4?M NaCl. The Kd values were not varied (31?34?μM) in a pH range of 5.5?8.5. This suggests that at high NaCl concentrations, Na+ and/or Cl ions bind with thermolysin and affect the binding of ANS with thermolysin. Our results also suggest that the activation and stabilization of thermolysin by NaCl are partially brought about by the binding of Na+ and/or Cl ions with thermolysin.  相似文献   

17.
The Ca2+- and Mg2+-activated ATPases of Escherichia coli NRC 482 and Salmonella typhimurium LT2 were purified to homogeneity. Both enzymes consisted of five polypeptides (α-?). The molecular weights of the α, β, and ? polypeptides were 56,800, 51,800 and 13,200 for both enzymes. The molecular weights of the γ and δ polypeptides of the E. coli and S. typhimurium ATPases were 32,000 and 20,700, and 30,900 and 21,500, respectively. In both ATPases the stoichiometry of the subunits was α3β3γδ? as determined with the 14C-labeled enzymes. The ATPases of either organism reacted with equal effectiveness with ATPase-deficient particles of the other organism to reconstitute energy-dependent transhydrogenase activity. Treatment of the homogeneous ATPases of both organisms with TPCK-trypsin stimulated ATPase activity but resulted in destruction of coupling factor activity. Trypsin treatment completely digested the δ and ? polypeptides, and removed up to 70% of the γ polypeptide. In the presence of the bifunctional cross-linking reagent dithiobis(succinimidyl propionate) ATPase activity was lost and cross-linking of α to β polypeptides occurred. Crosslinking of α to α or β to β polypeptides was not detected. The function of the individual polypeptides of the ATPase is discussed and a model for their spatial arrangement in the enzyme is presented.  相似文献   

18.
Substrate-attached asynchronous HeLa cells were extracted with Triton X-100 and analysed by electron microscopy and two-dimensional gel electrophoresis. Such Triton cytoskeletons showed actin filament bundles, microtubules, intermediate filaments, and actin networks in the substrate-associated lamellae, and contained around 90 polypeptides (48 basic, 42 acidic; 52% of total actin, 99% of vimentin, 41% of α-actinin and 30% of β-tubulin).Cytoskeletons produced by further extraction in high and low salt buffers (L-H-L) showed only intermediate filaments, the nucleus and residual actin, and contained a total of 19 polypeptides (13 acidic, 6 basic). Of these, 12 corresponded to abundant acidic proteins in the 47,000 to 70,000 Mr region as determined by staining with Coomassie blue and labelling with a mixture of 14C-labelled amino acids. Using L-H-L extracted cytoplasts, and employing an actin depolymerising protein from slime moulds, seven abundant acidic IEF3 polypeptides were shown to be present in these intermediate filament-enriched, substrate-attached cytoplast cytoskeletons. These polypeptides (L-H-L cytoplast polypeptides) corresponded to vimentin (IEF 26, 54,000 Mrmr) and six polypeptides (IEF 12, 68,000 Mr; IEF 24, 56,000 Mr; IEF 31, 50,000 Mr; IEF 35, 49,000 Mr; IEF 36, 48,500 Mr and IEF 46, 43,500 Mr) not previously reported as present in cytoskeletons. Peptide analysis showed that these were not related as products of modification or proteolysis.Labelling of mitotic and interphase cells with [35S]methionine followed by one-dimensional peptide map analysis showed that IEF 24, 26 (vimentin), 31 and 36 are preferentially modified during mitosis. These modifications correspond to phosphorylations of IEF 26 (vimentin) and 31, and to an unknown type for IEF 24. IEF 36 is phosphorylated in interphase to yield IEF 37, and the latter is further phosphorylated in mitosis. These results suggest that modification of the L-H-L cytoplast polypeptides may be important in the reorganization of cytoskeletal elements that takes place during cell division.  相似文献   

19.
《Bioorganic chemistry》1986,14(2):182-193
The following di- and tripeptides were synthesized to study the potential utility of thermolysin as a catalyst in reactions of incorporation of Nα-acyl-l-asparagine into esters of amino acids and peptides: Boc-Asn-Ile-OBzl, Z-Asn-Ile-OBzl, Moz-Asn-Ile-OBzl, Boc-Asn-Leu-OBzl, Z-Asn-Leu-OBzl, Moz-Asn-Leu-OBzl, Boc-Asn-Phe-OBzl, Z-Asn-Phe-OBzl, Moz-Asn-Phe-OBzl, Z-Asn-Val-OBzl, Moz-Asn-Val-OBzl, Moz-Asn-Ile-Gly-OBzl, Moz-Asn-Ile-Ala-OBzl, Moz-Asn-Ile-Leu-OBzl, and Moz-Asn-Ile-Phe-OBzl. All of these peptides were obtained in pure form in good yield and characterized by thin-layer chromatography, melting point, elemental analysis, amino acid analysis, and proton magnetic resonance. The use of benzyloxycarbonyl (Z) and p-methoxybenzyloxycarbonyl (Moz) as protecting groups for asparagine gave excellent yields of the dipeptides. Relative to the dipeptides, the synthesis of the tripeptides was found to require lower enzyme concentrations and reaction times. Since the yields of the tripeptides failed to exhibit significant differences, it was not possible to establish the existence of a secondary specificity of thermolysin for the residue P2. A methodological study was also performed to determine the optimum conditions for synthesis of Boc-Asn-Ile-OBzl. This study consisted of an analysis of the influence of pH, enzyme concentration, volume and concentration of the solution of sodium acetate, relative proportions of carboxyl and amine components, temperature, and addition of organic solvent to the reaction medium.  相似文献   

20.
The rate of synthesis of envelope proteins and phospholipids during the cell cycle of Escherichia coli B/r has been studied using both synchronous cultures and random cultures, first labelled and then subsequently fractionated on an age basis by the membrane elution technique. The rate of total protein synthesis and of phospholipid synthesis, measured by incorporation of [2-3H]glycerol into whole cells, was found to increase exponentially throughout the cell cycle. Total envelope protein was also synthesized continuously throughout the cycle, but the rate of synthesis showed a stepwise pattern with a discrete doubling in rate in the first half of the cycle. Analysis of the pattern of synthesis of about 29 individual envelope polypeptides by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography revealed that the great majority followed the pattern of the bulk measurements, with a discrete increase in rate of synthesis early in the cycle. One envelope polypeptide, molecular weight 76,000, was, however, only synthesized during a brief period, near the time of division of the bacteria. Pulse-chase studies of envelope polypeptide synthesis in synchronous cultures demonstrated that (1) synthesis and insertion of polypeptide into the envelope was always completed within the pulse period; (2) no post-synthetic modification of polypeptides was detected; (3) one group of polypeptides, including a major outer membrane protein, maintained a stable association with the envelope, whilst a second group displayed considerable “turnover”; (4) about 70% of newly synthesized 76,000 molecular weight protein was lost from the envelope during the succeeding generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号