首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unregulated or overexpressed matrix metalloproteinases (MMPs), including stromelysin, collagenase, and gelatinase. have been implicated in several pathological conditions including arthritis and cancer. Small-molecule MMP inhibitors may have therapeutic value in the treatment of these diseases. In this regard, the solution structures of two stromelysin/ inhibitor complexes have been investigated using 1H, 13C, and 15N NMR spectroscopy. Both-inhibitors are members of a novel class of matrix metalloproteinase inhibitor that contain a thiadiazole group and that interact with stromelysin in a manner distinct from other classes of inhibitors. The inhibitors coordinate the catalytic zinc atom through their exocyclic sulfur atom, with the remainder of the ligand extending into the S1-S3 side of the active site. The binding of inhibitor containing a protonated or fluorinated aromatic ring was investigated using 1H and 19F NMR spectroscopy. The fluorinated ring was found to have a reduced ring-flip rate compared to the protonated version. A strong, coplanar interaction between the fluorinated ring of the inhibitor and the aromatic ring of Tyr155 is proposed to account for the reduced ring-flip rate and for the increase in binding affinity observed for the fluorinated inhibitor compared to the protonated inhibitor. Binding interactions observed for the thiadiazole class of ligands have implications for the design of matrix metalloproteinase inhibitors.  相似文献   

2.
Primary and passaged human synovial fibroblasts isolated from rheumatoid pannus were treated with recombinant interleukin-1 (IL-1) alpha or beta, tumor necrosis factor-alpha (TNF), or phorbol myristate acetate (PMA) to determine the effects of these stimuli on the relative expression of stromelysin, collagenase, and tissue inhibitor of metalloproteinases (TIMP). The steady-state mRNA levels for these genes and glyceraldehyde-3-phosphate dehydrogenase were determined on Northern blots. Immunoblot analyses of the conditioned media using monoclonal antibodies generated against recombinant human stromelysin, collagenase, or TIMP showed that protein levels reflected the corresponding steady-state mRNA levels. The results revealed that 1) stromelysin and collagenase were not always coordinately expressed; 2) IL-1 was more potent than TNF or PMA in the induction of stromelysin expression; 3) neither IL-1 nor TNF significantly affected TIMP expression; 4) PMA induced both metalloproteinase and TIMP expression; and 5) the combination of IL-1 plus TNF had a synergistic effect on stromelysin expression. Dose response and time course experiments demonstrated that the synergistic effect of IL-1 plus TNF occurred at saturating concentrations of each cytokine and lasted for 7 days. In summary, the ability of IL-1 and TNF to preferentially induce stromelysin and collagenase expression, versus TIMP, may define a pivotal role for these cytokines in the pathogenesis of rheumatoid arthritis.  相似文献   

3.
The full three-dimensional structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent, sulfonamide hydroxamic acid inhibitor (CGS 27023) has been determined by NMR spectroscopy. The results reveal a core domain for the protein consisting of three alpha-helices and five beta-sheet strands with an overall tertiary fold similar to the catalytic domains of other matrix metalloproteinase family members. The S1' pocket, which is the major site of hydrophobic binding interaction, was found to be a wide cleft spanning the length of the protein and presenting facile opportunity for inhibitor extension deep into the pocket. Comparison with the reported X-ray structure of collagenase-3 showed evidence of flexibility for the loop region flanking the S1' pocket in both NMR and X-ray data. This flexibility was corroborated by NMR dynamics studies. Inhibitor binding placed the methoxy phenyl ring in the S1' pocket with the remainder of the molecule primarily solvent-exposed. The binding mode for this inhibitor was found to be similar with respect to stromelysin-1 and collagenase-1; however, subtle comparative differences in the interactions between inhibitor and enzyme were observed for the three MMPs that were consistent with their respective binding potencies.  相似文献   

4.
Recombinant human interstitial collagenase, an N-terminal truncated form, delta 243-450 collagenase, recombinant human stromelysin-1, and an N-terminal truncated form, delta 248-460 stromelysin, have been stably expressed in myeloma cells and purified. The truncated enzymes were similar in properties to their wild-type counterparts with respect to activation requirements and the ability to degrade casein, gelatin, and a peptide substrate, but truncated collagenase failed to cleave native collagen. Removal of the C-terminal domain from collagenase also modified its interaction with tissue inhibitor of metalloproteinases-1. Hybrid enzymes consisting of N-terminal (1-242) collagenase.C-terminal (248-460) stromelysin and N-terminal (1-233) stromelysin.C-terminal (229-450) collagenase, representing an exchange of the complete catalytic and C-terminal domains of the two enzymes, were expressed in a transient system using Chinese hamster ovary cells and purified. Both proteins showed similar activity to their N-terminal parent and neither was able to degrade collagen. Analysis of the ability of the different forms of recombinant enzyme to bind to collagen by ELISA showed that both pro and active stromelysin and N-terminal collagenase.C-terminal stromelysin bound to collagen equally well. In contrast, only the active forms of collagenase and N-terminal stromelysin.C-terminal collagenase bound well to collagen, as compared with their pro forms.  相似文献   

5.
Interactions of stromelysin with a series of inhibitors representative of three chemical templates with distinct binding modes were examined. Unfolding temperatures for inhibitor complexes were 10 degrees C to 15 degrees C greater than for apo stromelysin. Minor changes in ellipticity in the far-UV CD spectra of complexes indicated that ligand-induced conformational changes were localized to the binding site and did not involve gross changes in protein folding. Isothermal titrating calorimetry of thiadiazole-containing inhibitors, which bind in the S(1)-S(3) subsites of stromelysin, indicated that the binding interaction was exothermic and only slightly favorable entropically. Near-UV CD spectra showed large positive ellipticity increases from 250 to 300 nm, consistent with an interaction between the benzene ring of the inhibitor and stromelysin residues Tyr155 and Tyr168. Interactions between stromelysin and amide-hydroxamate ligands, which bind in the S(')(1)-S(')(3) subsites, were found to be both enthalpically and entropically driven. Binding of this class of ligands resulted in modest negative ellipticity changes at 260-285 nm and positive increases at 292 nm. Stromelysin complexed to a lactam-hydroxamate inhibitor with structure extending into both the S(1)-S(3) and S(')(1)-S(')(3) subsites showed increased ellipticity at 245 nm and negative changes at 260-285 and 295 nm.  相似文献   

6.
A new class of matrix metalloproteinase (MMP) inhibitors has been identified by screening a collection of compounds against stromelysin. The inhibitors, 2,4,6-pyrimidine triones, have proven to be potent inhibitors of gelatinases A and B. An X-ray crystal structure of one representative compound bound to the catalytic domain of stromelysin shows that the compounds bind at the active site and ligand the active-site zinc. The pyrimidine triones mimic substrates in forming hydrogen bonds to key residues in the active site, and provide opportunities for placing appropriately chosen groups into the S1' specificity pocket of MMPS: A number of compounds have been synthesized and assayed against stromelysin, and the variations in potency are explained in terms of the binding mode revealed in the X-ray crystal structure.  相似文献   

7.
8.
The binding of 4-(N-acetylaminoglucosyl)-N-acetylglucosamine to lysozyme was studied by both nuclear magnetic resonance (NMR) and temperature-jump methods under comparable conditions. The NMR measurements on the inhibitor spectrum were carried out over a range of inhibitor concentrations including levels at which most of the inhibitor was bound to the enzyme. Data in this region were obtained by a novel difference method in conjunction with correlation spectroscopy. The results from the combination of both experimental techniques demonstrated the existence of a two-step binding mechanism and produced both values for all of the individual rate constants and also the NMR spectral data for the inhibitor in the two enzyme-inhibitor complexes. The later data characterize the environment experienced by the inhibitor at each stage in the binding process and thus provides both a three-dimensional and a dynamic picture of the interaction.  相似文献   

9.
Two novel 3′-substituted carboxycylopropylglycines, (2S,1′S,2′S,3′R)-2-(3′-xanthenylmethyl-2′-carboxycyclopropyl)glycine (8a) and (2S,1′S,2′S,3′R)-2-(3′-xanthenylethyl-2′-carboxycyclopropyl)glycine (8b), were synthesized and evaluated as mGluR ligands. Compound 8b showed to be a potent group II antagonist with submicromolar activity.  相似文献   

10.
We have identified acridinyl derivatives as potent aspartic protease inhibitors by virtual screening of in-house library of synthetic compounds. Enzyme inhibition experiments showed that both compounds inhibit human cathepsin D and Plasmodium falciparum plasmepsin-II in nanomolar ranges. The IC50 values against cathepsin D and plasmepsin-II of compound-Nar103 were found to be 9.0 ± 2.0 and 4.0 ± 1.0 nM and of compound-Nar110 were 0.5 ± 0.05 and 0.13 ± 0.03 nM, respectively. Ligand docking predicted the binding of acridinyl derivatives at the substrate-binding cleft, where hydrazide part of the inhibitors interact with the S1–S1′ subsite residues including catalytic aspartates. The phenyl ring and acridinyl moiety of the inhibitors were predicted to interact with S2/S3 and S2′/S3′ subsite residues.  相似文献   

11.
The homologous proteinase inhibitors, human alpha 2-macroglobulin (alpha 2M) and chicken ovostatin, have been compared with respect to their "bait" region sequences and interactions with two human matrix metalloproteinases, collagenase and stromelysin. A stretch of 34 amino acid residues of the ovostatin bait region sequence was determined and the matrix metalloproteinase cleavage sites identified. Collagenase cleaved a X-Leu bond where X was unidentified, whereas the major cleavage site by stromelysin was at the Gly-Phe bond, 4 residues on the COOH-terminal side of the collagenase cleavage site. Collagenase cleaved the alpha 2M bait region at the Gly679-Leu680 bond, and stromelysin at Gly679-Leu680 and Phe684-Tyr685 bonds. Sequence similarity in the bait region of members of the alpha-macroglobulin family is strikingly low. The kinetic studies indicate that alpha 2M is a 150-fold better substrate for collagenase than type I collagen. Structural predictions based on the bait region sequences suggest that a collagen-like triple helical structure is not a prerequisite for the efficient binding of tissue collagenase to a substrate. The binding of stromelysin to alpha 2M is slower than that of collagenase. Stromelysin reacts with ovostatin even more slowly. Despite the preference of chicken ovostatin for metalloproteinases, human alpha 2M, a far less selective inhibitor, reacts more rapidly with collagenase and stromelysin. These results suggest that alpha 2M may play an important role in regulating the activities of matrix metalloproteinases in the extracellular space.  相似文献   

12.
The inhibition of DPP-IV by saxagliptin has been proposed to occur through formation of a covalent but reversible complex. To evaluate further the mechanism of inhibition, we determined the X-ray crystal structure of the DPP-IV:saxagliptin complex. This structure reveals covalent attachment between S630 and the inhibitor nitrile carbon (C-O distance <1.3 A). To investigate whether this serine addition is assisted by the catalytic His-Asp dyad, we generated two mutants of DPP-IV, S630A and H740Q, and assayed them for ability to bind inhibitor. DPP-IV H740Q bound saxagliptin with an approximately 1000-fold reduction in affinity relative to DPP-IV WT, while DPP-IV S630A showed no evidence for binding inhibitor. An analog of saxagliptin lacking the nitrile group showed unchanged binding properties to the both mutant proteins, highlighting the essential role S630 and H740 play in covalent bond formation between S630 and saxagliptin. Further supporting mechanism-based inhibition by saxagliptin, NMR spectra of enzyme-saxagliptin complexes revealed the presence of three downfield resonances with low fractionation factors characteristic of short and strong hydrogen bonds (SSHB). Comparison of the NMR spectra of various wild-type and mutant DPP-IV:ligand complexes enabled assignment of a resonance at approximately 14 ppm to H740. Two additional DPP-IV mutants, Y547F and Y547Q, generated to probe potential stabilization of the enzyme-inhibitor complex by this residue, did not show any differences in inhibitor binding either by ITC or NMR. Together with the previously published enzymatic data, the structural and binding data presented here strongly support a histidine-assisted covalent bond formation between S630 hydroxyl oxygen and the nitrile group of saxagliptin.  相似文献   

13.
The preparation and SAR of several piperazic acid-based stromelysin (MMP-3) inhibitors is presented. The standard P3′ methyl amide substituent can be replaced by other carboxy based substituents and maintain good binding affinity. Removal of a hydrogen-bond acceptor results in a 30-fold decrease in activity.  相似文献   

14.
The antibiotic drug, netropsin, was complexed with the DNA oligonucleotide duplex [d(GGTATACC)]2 to explore the effects of ligand binding on the 13C NMR chemical shifts of the DNA base and sugar carbons. The binding mode of netrospin to TA-rich tracts of DNA has been well documented and served as an attractive model system. For the base carbons, four large changes in resonance chemical shifts were observed upon complex formation: −0.64 ppm for carbon 4 of either Ado4 or Ado6, 1.36 ppm for carbon 2 of Thd5, 1.33 ppm for carbon 5 of Thd5 and 0.94 for carbon 6 of Thd5. AdoC4 is covalently bonded to a heteroatom that is hydrogen bonded to netropsin; this relatively large deshielding is consistent with the known hydrogen bond formed at AdoN3. The three large shielding increases are consistent with hydrogen bonds to water in the minor groove being disrupted upon netropsin binding. For the DNA sugar resonances, large changes in chemical shifts were observed upon netropsin complexation. The 2′, 3′ and 5′ 13C resonances of Thd3 and Thd5 were shielded whereas those of Ado4 and Ado6 were deshielded; the 13C resonances of 1′ and 4′ could not be assigned. These changes are consistent with alteration of the dynamic pseudorotational states occupied by the DNA sugars. A significant alteration in the pseudorotational states of Ado4 or Ado6 must occur as suggested by the large change in chemical shift of −1.65 ppm of the C3′ carbon. In conclusion, 13C NMR may serve as a practical tool for analyzing structural changes in DNA-ligand complexes.  相似文献   

15.
Scytalidoglutamic peptidase (SGP) from Scytalidium lignicolum is the founding member of the newly discovered\ family of peptidases, G1, so far found exclusively in fungi. The crystal structure of SGP revealed a previously undescribed fold for peptidases and a unique catalytic dyad of residues Gln53 and Glu136. Surprisingly, the beta-sandwich structure of SGP is strikingly similar to members of the carbohydrate-binding concanavalin A-like lectins/glucanases superfamily. By analogy with the active sites of aspartic peptidases, a mechanism employing nucleophillic attack by a water molecule activated by the general base functionality of Glu136 has been proposed. Here, we report the first crystal structures of SGP in complex with two transition state peptide analogs designed to mimic the tetrahedral intermediate of the proteolytic reaction. Of these two analogs, the one containing a central S-hydroxyl group is a potent sub-nanomolar inhibitor of SGP. The inhibitor binds non-covalently to the concave surface of the upper beta-sheet and enables delineation of the S4 to S3' substrate specificity pockets of the enzyme. Structural differences in these pockets account for the unique substrate preferences of SGP among peptidases having an acidic pH optimum. Inhibitor binding is accompanied by a structuring of the region comprising residues Tyr71-Gly80 from being mostly disordered in the apoenzyme and leading to positioning of crucial active site residues for establishing enzyme-inhibitor contacts. In addition, conformational rearrangements are seen in a disulfide bridged surface loop (Cys141-Cys148), which moves inwards, partially closing the open substrate binding cleft of the native enzyme. The non-hydrolysable scissile bond analog of the inhibitor is located in the active site forming close contacts with Gln53 and Glu136. The nucleophilic water molecule is displaced and a unique mode of binding is observed with the S-OH of the inhibitor occupying the oxyanion binding site of the proposed tetrahedral intermediate. Details of the enzyme-inhibitor interactions and mechanistic interpretations are discussed.  相似文献   

16.
Band 3, the erythrocyte anion transport protein, mediates the one-for-one exchange of bicarbonate and chloride ions across the membrane and consequently plays an important role in respiration. Binding to the protein forms the first step in the translocation of the chloride across the membrane. 35Cl and 37Cl NMR relaxation measurements at various field strengths were used to study chloride binding to the protein in the presence and absence of the transport inhibitor 4,4′-dinitrostilbene-2,2′-disulfonate. Significant differences occurred in the NMR relaxation rates depending on whether the inhibitor was present or not. The results indicate that the rate of chloride association and dissociation at each external binding site occurs on a time scale of 5 μs. This implies that the transmembrane flux is not limited by the rate of chloride binding to the external chloride binding site of band 3. The rotational correlation-time of chloride bound to band 3 was found to be 20 ns with a quadrupole coupling constant of 3 MHz.  相似文献   

17.
1. Pure rabbit bone metalloproteinase inhibitor (TIMP) bound tightly to pure rabbit bone collagenase with an apparent Kd of 1.4 X 10(-10) M. 2. The molecular weight of the enzyme-inhibitor complex was found to be 54 000, but no enzyme activity could be recovered from the complex after treatment with either mercurials or proteinases. The complex thus differed from latent collagenase in terms of size, susceptibility to mercurials and behaviour on concanavalin A-Sepharose. 3. The interaction of the purified components was compared with that of crude collagenase and crude inhibitor in culture medium. Mercurial treatment partially reversed the inhibition in the crude system, but not when the purified components were used. 4. The significance of the results is discussed in relation to the extracellular control of the activity of collagenase.  相似文献   

18.
Alkaline proteinase inhibitor of Pseudomonas aeruginosa is a 11.5-kDa, high affinity inhibitor of the serralysin class of zinc-dependent proteinases secreted by several Gram-negative bacteria. X-ray crystallography of the proteinase-inhibitor complex reveals that five N-terminal inhibitor residues occupy the extended substrate binding site of the enzyme and that the catalytic zinc is chelated by the alpha-amino and carbonyl groups of the N-terminal residue of the inhibitor. In this study, we assessed the effect of alteration of inhibitor residues 2-5 on its affinity for Pseudomonas alkaline proteinase (APR) as derived from the ratio of the dissociation and associate rate constants for formation of the enzyme-inhibitor complex. The largest effect was observed at position Ser-2, which occupies the S1' pocket of the enzyme and donates a hydrogen bond to the carboxyl group of the catalytic Glu-177 of the proteinase. Substitution of Asp, Arg, or Trp at this position increased the dissociation constant KD by 35-, 180-, and 13-fold, respectively. Mutation at positions 3-5 of the trunk also resulted in a reduction in enzyme-inhibitor affinity, with the exception of an I4W mutant, which exhibited a 3-fold increase in affinity. Molecular dynamics simulation of the complex formation between the catalytic domain of APR and the S2D mutant showed that the carboxyl of Asp-2 interacts with the catalytic zinc, thereby partially neutralizing the negative charge that otherwise would clash with the carboxyl group of Glu-177 of APR. Simulation of the interaction between the alkaline proteinase and the I4W mutant revealed a major shift in the loop comprised of residues 189-200 of the enzyme that allowed formation of a stacking interaction between the aromatic rings of Ile-4 of the inhibitor and Tyr-158 of the proteinase. This new interaction could account for the observed increase in enzyme-inhibitor affinity.  相似文献   

19.
The collagenases are a class of matrix degradative enzymes whose actions are important in physiological and pathological processes. The human 72-kDa type IV collagenase (matrix metalloproteinase-2) and its proteinase inhibitor, tissue inhibitor of metalloproteinases-2 (TIMP-2), are produced as a proenzyme-inhibitor complex by numerous cell lines. We analyzed the quaternary structure of and enzyme-inhibitor interactions in the native enzyme-inhibitor complex by studying the pattern of complexes demonstrated by molecular weight determination in nondenaturing polyacrylamide gels and evaluating the products formed by reaction of the native complexes with cross-linking agents. Electrophoresis in native polyacrylamide gels demonstrates that approximately 79% of the latent enzyme is present in a 1:1 bimolecular complex with the inhibitor TIMP-2, with 21% present as a complete tetrameric complex of two molecules of collagenase combined with two molecules of TIMP-2. The enzyme complex activated with organomercurials displays a shift to a higher proportion of the bimolecular complex with only 5% present as higher molecular weight complexes. Cross-linking of the latent and active forms of the complex with bis(sulfosuccinimidyl) suberate (BS3) and bis(sulfosuccinimidyl) tartarate demonstrates both the 1:1 and 2:2 complexes as well as an intermediate form that appears to be a complex composed of two molecules of collagenase and one of TIMP-2. The distribution of cross-linked products is unchanged with the addition of excess TIMP-2 to the reaction mix, implying that the binding sites for TIMP-2 to the initial enzyme-inhibitor complex are all occupied when the stoichiometry is 1 to 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号