首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C A Fox  M D Sheets  E Wahle    M Wickens 《The EMBO journal》1992,11(13):5021-5032
Specific maternal mRNAs receive poly(A) during early development as a means of translational regulation. In this report, we investigated the mechanism and control of poly(A) addition during frog oocyte maturation, in which oocytes advance from first to second meiosis becoming eggs. We analyzed polyadenylation in vitro in oocyte and egg extracts. In vivo, polyadenylation during maturation requires AAUAAA and a U-rich element. The same sequences are required for polyadenylation in egg extracts in vitro. The in vitro reaction requires at least two separable components: a poly(A) polymerase and an RNA binding activity with specificity for AAUAAA and the U-rich element. The poly(A) polymerase is similar to nuclear poly(A) polymerases in mammalian cells. Through a 2000-fold partial purification, the frog egg and mammalian enzymes were found to be very similar. More importantly, a purified calf thymus poly(A) polymerase acquired the sequence specificity seen during frog oocyte maturation when mixed with the frog egg RNA binding fraction, demonstrating the interchangeability of the two enzymes. To determine how polyadenylation is activated during maturation, we compared polymerase and RNA binding activities in oocyte and egg extracts. Although oocyte extracts were much less active in maturation-specific polyadenylation, they contained nearly as much poly(A) polymerase activity. In contrast, the RNA binding activity differed dramatically in oocyte and egg extracts: oocyte extracts contained less binding activity and the activity that was present exhibited an altered mobility in gel retardation assays. Finally, we demonstrate that components present in the RNA binding fraction are rate-limiting in the oocyte extract, suggesting that fraction contains the target that is activated by progesterone treatment. This target may be the RNA binding activity itself. We propose that in spite of the many biological differences between them, nuclear polyadenylation and cytoplasmic polyadenylation during early development may be catalyzed by similar, or even identical, components.  相似文献   

2.
3.
Poly(A)-containing RNAs from cytoplasm and nuclei of adult Xenopus liver cells are compared. After denaturation of the RNA by dimethysulfoxide the average molecule of nuclear poly(A)-containing RNA has a sedimentation value of 28 S whereas the cytoplasmic poly(A)-containing RNA sediments slightly ahead of 18 S. To compare the complexity of cytoplasmic and nuclear poly(A)-containing RNA, complementary DNA (cDNA) transcribed on either cytoplasmic or nuclear RNA is hybridized to the RNA used as a template. The hybridization kinetics suggest a higher complexity of the nuclear RNA compared to the cytoplasmic fraction. Direct evidence of a higher complexity of nuclear poly(A)-containing RNA is shown by the fact that 30% of the nuclear cDNA fails to hybridize with cytoplasmic poly(A)-containing RNA. An attempt to isolate a specific probe for this nucleus-restricted poly(A)-containing RNA reveals that more than 10(4) different nuclear RNA sequences adjacent to the poly(A) do not get into the cytoplasm. We conclude that a poly(A) on a nuclear RNA does not ensure the transport of the adjacent sequence to the cytoplasm.  相似文献   

4.
5.
The kinetics of accumulation of nuclear and cytoplasmic poly(A) have been determined in sea urchin blastulas and gastrulas, stages when essentially all mRNA is synthesized de novo in the nucleus. A majority of the labeled poly(A) is found in the cytoplasmic fraction after a brief pulse. The ratio of radioactive AMP to adenosine in pulse-labeled nuclear, cytoplasmic, and polyribosomal poly(A) is considerably less than the number average length of the labeled poly(A), indicating that there is 3′-terminal addition of adenosine to previously synthesized poly(A). The size distribution of pulse-labeled, terminally elongated poly(A) in the cytoplasm is similar to that of the largest nuclear poly(A) rather than the steady-state size distribution of cytoplasmic poly(A), which is smaller and more heterogeneous. The most likely interpretation of these results is that there is a predominant 3′ terminal addition of short tracts of adenosine to poly(A) attached to nuclear RNA just before or during entrance of this RNA into the cytoplasm. In this respect, much of the 3′ terminal addition may be thought of as terminal completion of poly(A) synthesis.  相似文献   

6.
We investigated immunohistochemically the localization of p33, an endogenous substrate protein for an arginine-specific ADP-ribosyltransferase in chicken liver. Polymorphonuclear-pseudo-eosinophilic granulocytes (heterophils) in interlobular connective tissues of the liver were exclusively and strongly stained with the antibody against p33. Strong reactivity was associated with granules in cytoplasm of the heterophils. When the chicken liver nuclear fraction was washed, the transferase activity was released into the 600 x g supernatant fraction while a nuclear enzyme poly(ADP-ribose) synthetase was retained in the pellet fraction. These results indicate that p33 and probably also ADP-ribosyltransferase, found in the liver nuclear fraction [Tanigawa et al. (1984) J. Biol. Chem. 259, 2022-2029, Mishima et al. (1988) Eur. J. Biochem. 179, 267-273], originate from interlobular heterophils of the chicken liver.  相似文献   

7.
Poly(A) polymerases (PAPs) from HeLa cell cytoplasmic and nuclear fractions were extensively purified by using a combination of fast protein liquid chromatography and standard chromatographic methods. Several forms of the enzyme were identified, two from the nuclear fraction (NE PAPs I and II) and one from the cytoplasmic fraction (S100 PAP). NE PAP I had chromatographic properties similar to those of S100 PAP, and both enzymes displayed higher activities in the presence of Mn2+ than in the presence of Mg2+, whereas NE PAP II was chromatographically distinct and had approximately equal levels of activity in the presence of Mn2+ and Mg2+. Each of the enzymes, when mixed with other nuclear fractions containing cleavage or specificity factors, was able to reconstitute efficient cleavage and polyadenylation of pre-mRNAs containing an AAUAAA sequence element. The PAPs alone, however, showed no preference for precursors containing an intact AAUAAA sequence over a mutated one, providing further evidence that the PAPs have no intrinsic ability to recognize poly(A) addition sites. Two additional properties of the three enzymes suggest that they are related: sedimentation in glycerol density gradients indicated that the native size of each enzyme is approximately 50 to 60 kilodaltons, and antibodies against a rat hepatoma PAP inhibited the ability of each enzyme to function in AAUAAA-dependent polyadenylation.  相似文献   

8.
We have compared the intracellular localization of catalase and another peroxisomal marker enzyme, alpha-hydroxy acid oxidase (HAOX), in the livers of guinea pig and rat using immunoelectron microscopy and subcellular fractionation combined with immunoblotting and enzyme activity determination. Antibodies against both enzymes were raised in rabbits and their specificities established by immunoblotting. By immunoelectron microscopy, gold particles representing antigenic sites for catalase were found in guinea pig hepatocytes not only in peroxisomes but also in the cytoplasm and the nuclear matrix. In rat liver, however, catalase was localized exclusively in peroxisomes with no cytoplasmic labeling. Moreover, in both species HAOX was found only in peroxisomes. Subcellular fractionation revealed that purified peroxisomes from both species contained comparable levels of each, catalase and HAOX activities. The total catalase activity, however, was substantially higher in guinea pig and most of this excess catalase was in the cytosolic fraction with some activity also in nuclei. In rat liver, 30 to 40% of both enzymes and in guinea pig liver 30% of HAOX were recovered in the supernatant fraction implying that the fragility of peroxisomes in both species is quite comparable. These observations establish the occurrence of extraperoxisomal catalase in guinea pig liver. The catalase in the cytoplasm and nucleus of liver parenchymal cells is most probably involved in scavenging of H2O2, protecting the cell against toxic and mutagenic effects of this noxious agent.  相似文献   

9.
10.
Poly(ADP-ribosyl)ation is an important post-translational modification which mostly affects nuclear proteins. The major roles of poly(ADP-ribose) synthesis are assigned to DNA damage signalling during base excision repair, apoptosis and excitotoxicity. The transient nature and modulation of poly(ADP-ribose) levels depend mainly on the activity of poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG), the key catabolic enzyme of poly(ADP-ribose). Given the fact that PARG substrate, poly(ADP-ribose), is found almost exclusively in the nucleus and that PARG is mainly localized in the cytoplasm, we wanted to have a closer look at PARG subcellular localization in order to better understand the mechanism by which PARG regulates intracellular poly(ADP-ribose) levels. We examined the subcellular distribution of PARG and of its two enzymatically active C-terminal apoptotic fragments both biochemically and by fluorescence microscopy. Green fluorescent protein (GFP) fusion proteins were constructed for PARG (GFP-PARG), its 74 kDa (GFP-74) and 85 kDa (GFP-85) apoptotic fragments and transiently expressed in COS-7 cells. Localization experiments reveal that all three fusion proteins localize predominantly to the cytoplasm and that a fraction also co-localizes with the Golgi marker FTCD. Moreover, leptomycin B, a drug that specifically inhibits nuclear export signal (NES)-dependent nuclear export, induces a redistribution of GFP-PARG from the cytoplasm to the nucleus and this nuclear accumulation is even more pronounced for the GFP-74 and GFP-85 apoptotic fragments. This observation confirms our hypothesis for the presence of important regions in the PARG sequence that would allow the protein to engage in CRM1-dependent nuclear export. Moreover, the altered nuclear import kinetics found for the apoptotic fragments highlights the importance of PARG N-terminal sequence in modulating PARG nucleocytoplasmic trafficking properties.  相似文献   

11.
Poly(A) polymerase activity was first detected in yeast extracts, primarily in association with the ribosomal fraction, by Twu and Bretthauer in 1971 (Twu, J. S., and Bretthauer, RK. (1971) Biochemistry 10, 1576-1582). This activity has now been separated into three distinct enzymes by chromatography on DEAE-cellulose. Each of the three enzymes can catalyze the incorporation of adenylate residues from ATP into a polyadenylate (poly(A)) tract at the 3' terminus of a primer RNA. Enzyme I elutes at 0.07 M ammonium sulfate from the DEAE-cellulose column, utilizes the mixed polynucleotide poly(A,G,C,U) or ribosomal RNA most efficiently in vitro, and may be responsible in vivo for the initiation of the poly(A) tracts found on yeast messenger RNA. Enzyme II elutes from the column at 0.20 M ammonium sulfate, requires poly(A) itself or an RNA primer containing a 3'-oligo(A) tract, and may be responsible in the nucleus for the elongation of tracts initiated by enzyme I. Enzyme III elutes from the column at 0.56 M ammonium sulfate and is present in low amounts in nuclear extracts. It may be involved in adding poly(A) tracts to messenger RNA in mitochondria. These enzymes also have the intrinsic capacity for the incorporation of cytidylate residues from CTP, which correlates with the finding of cytidylate residues in the poly(A) tracts present in the yeast RNA which is rapidly labeled in vivo. About 75% of the total poly(A) polymerase activity of yeast is enzyme I, most of which is present in the soluble protein fraction of the whole yeast extract. About 20% of the total poly(A) polymerase is enzyme II, and 1 to 5% is enzyme III. All three of the yeast poly(A) polymerases require an RNA primer with a free 3'-hydroxyl group, show no requirement for a DNA template, require Mn-2+ for optimal activity, have pH optima of 8.5, and are inhibited by GTP, CTP, UTP, and native yeast DNA. Polymerases I and II have similar molecular weights by gel filtration.  相似文献   

12.
13.
D A Stetler  S T Jacob 《Biochemistry》1985,24(19):5163-5169
Poly(A) polymerases were purified from the cytosol fraction of rat liver and Morris hepatoma 3924A and compared to previously purified nuclear poly(A) polymerases. Chromatographic fractionation of the hepatoma cytosol on a DEAE-Sephadex column yielded approximately 5 times as much poly(A) polymerase as was obtained from fractionation of the liver cytosol. Hepatoma cytosol contained a single poly(A) polymerase species [48 kilodaltons (kDa)] which was indistinguishable from the hepatoma nuclear enzyme (48 kDa) on the basis of CNBr cleavage maps. Liver cytosol contained two poly(A) polymerase species (40 and 48 kDa). The CNBr cleavage patterns of these two enzymes were distinct from each other. However, the cleavage pattern of the 40-kDa enzyme was similar to that of the major liver nuclear poly(A) polymerase (36 kDa), and approximately three-fourths of the peptide fragments derived from the 48-kDa species were identical with those from the hepatoma enzymes (48 kDa). NI-type protein kinases from liver or hepatoma stimulated hepatoma nuclear and cytosolic poly(A) polymerases 4-6-fold. In contrast, the liver cytosolic 40- and 48-kDa poly(A) polymerases were stimulated only slightly or inhibited by similar units of the protein kinases. Antibodies produced in rabbits against purified hepatoma nuclear poly(A) polymerase reacted equally well with hepatoma nuclear and cytosolic enzyme but only 80% as well with the liver cytosolic 48-kDa poly(A) polymerase and not at all with liver cytosolic 40-kDa or nuclear 36-kDa enzymes. Anti-poly(A) polymerase antibodies present in the serum of a hepatoma-bearing rat reacted with hepatoma nuclear and cytosolic poly(A) polymerases to the same extent but only 40% as well with the liver cytosolic 48-kDa enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The poly(A) polymerases from the cytosol and ribosomal fractions of Ehrlich ascites tumour cells are isolated and partially purified by DEAE-cellulose and phosphocellulose column chromatography. Two distinct enzymes are identified: (a) a cytosol Mn2+-dependent poly(A) polymerase (ATP:RNA adenylyltransferase) and (b) a ribosome-associated enzyme defined tentatively as ATP(UTP): RNA nucleotidyltransferase. The cytosol poly(A) polymerase is strictly Mn2+-dependent (optimum at 1 mM Mn2+) and uses only ATP as substrate, poly(A) is a better primer than ribosomal RNA. The purified enzyme is free of poly(A) hydrolase activity, but degradation of [3H]poly(A) takes place in the presence of inorganic pyrophosphate. Most likely this enzyme is of nuclear origin. The ribosomal enzyme is associated with the ribosomes but it is found also in free state in the cytosol. The purified enzyme uses both ATP and UTP as substrates. The substrate specificity varies depending on ionic conditions: the optimal enzyme activity with ATP as substrate is at 1 mM Mn2+, while that with UTP as substrate is at 10--20 mM Mg2+. The enzymes uses both ribosomal RNA and poly(A) [but not poly(U)] as primers. The purified enzyme is free of poly(A) hydrolase activity.  相似文献   

15.
Y Takagaki  L C Ryner  J L Manley 《Cell》1988,52(5):731-742
To study the mechanism and factors required to form the 3' ends of polyadenylated mRNAs, we have fractionated HeLa cell nuclear extracts carrying out the normally coupled cleavage and polyadenylation reactions. Each reaction is catalyzed by a distinct, separable activity. The partially purified cleavage enzyme (at least 360,000 MW) retained the specificity displayed in nuclear extracts, since substitutions in the AAUAAA signal sequence inhibited cleavage. In contrast, the fractionated poly(A) polymerase (300,000 MW) lost all specificity. When fractions containing the cleavage and polyadenylation activities were mixed, the efficiency and specificity of the polyadenylation reaction were restored. Interestingly, the cleavage activity by itself functioned well on only one of four precursor RNAs tested. However, when mixed with the poly(A) polymerase-containing fraction, the cleavage activity processed the four precursors with comparable efficiencies.  相似文献   

16.
17.
Poly(A)-containing RNA was isolated from rat liver microsomes and from the post-microsomal supernatant fraction. Approximately 15% of total rat liver poly(A)-containing RNA was found to be present in the post-microsomal supernatant. The relative capacity for apoferritin synthesis of each poly(A)-containing RNA preparation was measured in a cell-free system derived from wheat germ. The post-microsomal supernatant fraction was found to be highly enriched with ferritin mRNA and accounted for 40–50% of the total ferritin-mRNA present in the cytoplasm of rat liver.  相似文献   

18.
We have previously reported [López-Rodas et al. (1989) J. Biol. Chem. 264, 19028-19033] that the yeast Saccharomyces cerevisiae contains four histone acetyltransferases, which can be resolved by ion-exchange chromatography, and their specificity toward yeast free histones was studied. In the present contribution we show that three of the enzymes are nuclear, type A histone acetyltransferases and they are able to acetylate nucleosome-bound histones. They differ in their histone specificity. Enzyme A1 acetylates H2A in chicken nucleosomes, although it is specific for yeast free H2B; histone acetyltransferase A2 is highly specific for H3, and histone acetyltransferase A3 preparations acetylate both H3 and H4 in nucleosomes. The fourth enzyme, which is located in the cytoplasm, does not accept nucleosomes as substrate, and it represents a canonical type B, H4-specific histone acetyltransferase. Finally, histone deacetylase activity is preferentially found in the nucleus.  相似文献   

19.
20.
Cholinesterase activity was detected by histochemical methods in normal human blood smears. In erythrocytes, acetylcholinesterase was found to be localized in the cortical region of the cells and, to a lesser degree, in the inner cytoplasm. In leucocytes, cholinesterase activity was found around the nuclear membrane and in the cytoplasm. The specificity of the enzymic activity was ascertained by using selective inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号