首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suspension arrays present a promising tool for multiplexed assays in large-scale screening applications. A simple and robust platform for quantitative multiprotein immunoanalysis has been developed with the use of magnetic Co:Nd:Fe(2)O(3)/luminescent Eu:Gd(2)O(3) core/shell nanoparticles (MLNPs) as a carrier. The magnetic properties of the MLNPs allow their manipulation by an external magnetic field in the separation and washing steps in the immunoassay. Their optical properties enable the internal calibration of the detection system. The multiplexed sandwich immunoassay involves dual binding events on the surface of the MLNPs functionalized with the capture antibodies. Secondary antibodies labeled with conventional organic dyes (Alexa Fluor) are used as reporters. The amount of the bound secondary antibody is directly proportional to the concentration of the analyte in the sample. In our approach, the fluorescence intensity of the reporter dye is related to the luminescence signal of the MLNPs. In this way, the intrinsic luminescence of the MLNPs serves as an internal standard in the quantitative immunoassay. The concept is demonstrated for a simultaneous immunoassay for three model proteins (human, rabbit, and mouse IgGs). The method uses a standard bench plate reader. It can be applied to disease diagnostics and to the detection of biological threats.  相似文献   

2.
Lately, the isolation of DNA using magnetic nanoparticles has received increased attention owing to their facile manipulation and low costs. Although methods involving their magnetic separation have been extensively studied, there is currently a need for an efficient technique to isolate DNA for highly sensitive diagnostic applications. We describe herein a method to isolate and purify DNA using biofunctionalized superparamagnetic nanoparticles synthesized by a modified polyol method to obtain the desired monodispersity, followed by surface modification with meso-2,3-dimercaptosuccinic acid (DMSA) containing carboxyl groups for DNA absorption. The DMSA-coated magnetic nanoparticles (DMSA-MNPs) were used for the isolation of DNA, with a maximum yield of 86.16%. In particular, we found that the isolation of DNA using small quantities of DMSA-MNPs was much more efficient than that using commercial microbeads (NucliSENS-easyMAG, BioMérieux). Moreover, the DMSA-MNPs were successfully employed in the isolation of genomic DNA from human blood. In addition, the resulting DNA–nanoparticle complex was directly subjected to PCR amplification without prior elution, which could eventually lead to simple, rapid, sensitive and integrated diagnostic systems.  相似文献   

3.
Central composite face-centered (CCF) design and response surface methodologies were used to investigate the effect of probe and target concentration and particle number in immobilization and hybridization on a microparticle-based DNA/DNA hybridization assay. The factors under study were combined according to the CCF design matrix, and the intensity of the hybridization signal was quantified by flow cytometry. A second-order polynomial was fitted to data and validated by analysis of variance. The results showed a complex relationship between variables and response given that all factors as well as some interactions were significant, yet it could explain 95% of the data. Probe and target concentration had the strongest impact on hybridization signal intensity. Increments in initial probe concentration in solution positively affected the hybridization signal until a negative influence of a compact probe layer emerged. This trend was attributed to probe-probe interactions. By manipulating particle number on both immobilization and hybridization, enhancements on the assay sensitivity could be obtained. Under optimized conditions, the limit of detection (LOD) at the 95% confidence level was determined to be 2.3 nM of target solution concentration.  相似文献   

4.
A new method to affect cells by cell–surface interaction is introduced. Biocompatible magnetic nanobeads are deposited onto a biocompatible magnetic thin layer. The particles are composed of small magnetite crystals embedded in a matrix which can be functionalized by different molecules, proteins or growth factors. The magnetic interaction between surface and beads prevents endocytosis if the setup is utilized for cell culturing. The force acting between particles and magnetic layer is calculated by a magnetostatic approach. Biocompatibility is ensured by using garnet layers which turned out to be nontoxic and stable under culturing conditions. The garnet thin films exhibit spatially and temporally variable magnetic domain configurations in changing external magnetic fields and depending on their thermal pretreatment. Several patterns and bead deposition methods as well as the cell–surface interactions were analyzed. In some cases the cells show directed growth. Theoretical considerations explaining particular cell behavior on this magnetic material involve calculations of cell growth on elastic substrates and bending of cell membranes.  相似文献   

5.
Salicylic acid-coated magnetic nanoparticles were prepared via a modified one-step synthesis and used for a one-stop extraction of genomic DNA from mammalian cells. The synthesized magnetic particles were used for magnetic separation of cells from the media by nonspecific binding of the particles as well as extraction of genomic DNA from the lysate. The quantity and quality were confirmed by agarose gel electrophoresis and polymerase chain reaction. The entire process of extraction and isolation can be completed within 30 min. Compared with traditional methods based on centrifugation and filtration, the established method is fast, simple, reliable, and environmentally friendly.  相似文献   

6.
介绍了纳米电化学DNA生物传感器的基本概念和分类,并介绍了用于DNA标记的纳米粒子的六种类型及其三大检测方法,在此基础上对纳米电化学DNA生物传感器在基因检测、疾病诊断、DNA检测等方面的最新进展进行了综述与讨论。  相似文献   

7.
Mesenchymal stem cells (MSCs), which can differentiate into multiple mesodermal tissues, may be useful for autologous cell transplantation, if MSCs, which are isolated from bone marrow in small numbers, can be expanded in vitro. We developed a combined methodological approach to enrich and proliferate MSCs in vitro using magnetic nanoparticles. Our magnetite cationic liposomes (MCLs), which have a positive surface charge in order to improve adsorption, accumulated in MSCs at a concentration of 20 pg of magnetite per cell. The MCLs exhibited no toxicity against MSCs in proliferation and differentiation to osteoblasts and adipocytes. The MSCs magnetically labeled by MCLs were enriched using magnets and then cultured, resulting in much higher density (seeding density, 1000 cells/cm2) than in ordinary culture (seeding density, 18 cells/cm2). When MSCs were seeded at high density using MCLs, there was a 5-fold increase in the number of cells, compared to culture prepared without MCLs. Our results suggest that this novel culture method using magnetic nanoparticles can be used to efficiently expand MSCs for clinical application.  相似文献   

8.
We immobilize α-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme’s activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems (μ-TAS).  相似文献   

9.
Heterogeneous rates of molecular change between some mammalian lineages are commonly explained by contrasts in generation time length. Here the generation time hypothesis is tested by comparing the relative rates of molecular change in related artiodactyl taxa differing by their generation time. A demographic model based on allometric relations with the adult body weight is used to estimate the cohort generation time in Bovidae and Cervidae families (Artiodactyla, Mammalia). Two pairs of closely related taxa (two cervids, two bovids) were selected, each showing clear ratios (1.5 to 3.5 times) in their generation time. Rates of genetic change in non-repeated nuclear DNA were estimated by DNA/DNA hybridization experiments performed among these ruminants and a camelid outgroup. Relative rate tests were applied to the two pairs of ingroup taxa differing by their generation time, in order to test if shorter generation time would correspond to higher rate of molecular change. Contradictory statistical results did not show a greater accumulation of nucleotide changes in the lineage leading to the short generation time species. The recorded differences in branch lengths of sister taxa were either conflicting or too small (relative to the contrasted generation times) to reveal a generation time effect. Alternative hypotheses are suggested to explain these preliminary results.  相似文献   

10.
Aims: To develop a simple, rapid and inexpensive soil DNA extraction protocol. Methods and Results: The protocol relies on the use of superparamagnetic silica‐magnetite nanoparticles for the isolation and purification of DNA from soil samples. DNA suitable for use in molecular biology applications was obtained from a number of soil samples. Conclusions: The DNA extracted using the tested method successfully permitted the PCR amplification of a fragment of the bacterial 16S rDNA gene. The extracted DNA could also be restriction endonuclease digested. Significance and Impact of the Study: The protocol reported here is simple and permits rapid isolation of PCR‐ready soil DNA. The method requires only small quantities of soil sample, is scalable and suitable for automation.  相似文献   

11.
We present a simple method for efficient DNA ligation utilizing the heat generation of ferromagnetic particles subjected to an ac magnetic field. We carry out the ligation of DNA fragments with cohesive ends using T4 DNA ligase immobilized on the surface of ferromagnetic particles. When a radio frequency alternating magnetic field is applied, ferromagnetic particles dissipate heat and DNA ligase on the particles is selectively heated up and activated with little influence on the annealing of DNA ends, as a result of which the ligation efficiency increases. We show that the ligation efficiency increases with an increase in the field amplitude.  相似文献   

12.
A new and simple method has been proposed to prepare magnetic Fe3O4-chitosan (CS) nanoparticles by cross-linking with sodium tripolyphosphate (TPP), precipitation with NaOH and oxidation with O2 in hydrochloric acid aqueous phase containing CS and Fe(OH)2, and these magnetic CS nanoparticles were used to immobilize lipase. The effects on the sequence of adding NaOH and TPP, the reaction temperature, and the ratio of CS/Fe(OH)2 were studied. TEM showed that the diameter of composite nanoparticles was about 80 nm, and that the magnetic Fe3O4 nanoparticles with a diameter of 20 nm were evenly dispersed in the CS materials. Magnetic measurement revealed that the saturated magnetisation of the Fe3O4-CS nanoparticles could reach 35.54 emu/g. The adsorption capacity of lipase onto nanoparticles could reach 129 mg/g; and the maximal enzyme activity was 20.02 μmol min−1 mg−1 (protein), and activity retention was as high as 55.6% at a certain loading amount.  相似文献   

13.
Quantitative information about the nucleic acids hybridization reaction on microarrays is fundamental to designing optimized assays for molecular diagnostics. This study presents the kinetic, equilibrium, and thermodynamic analyses of DNA hybridization in a microarray system designed for fast molecular testing of pathogenic bacteria. Our microarray setup uses a porous, nylon membrane for probe immobilization and flowthrough incubation. The Langmuir model was used to determine the reaction rate constants of hybridization with antisense targets specific to Staphylococcus epidermidis and Staphylococcus aureus strains. The kinetic analysis revealed a sequence-dependent reaction rate, with association rate constants on the order of 105 M−1 s−1 and dissociation rate constants of 10−4 s−1. We found that by increasing the probe surface density from 1011 to 1012 molecules/cm2, the hybridization rate and efficiency are suppressed while the melting temperature of the DNA duplex increases. The maximum fraction of hybridized capture probes at equilibrium did not exceed 50% for hybridization with antisense sequences and was below 6% for hybridization with long targets obtained from PCR. The van’t Hoff analysis of the temperature denaturation data showed that the DNA hybridization in our porous, flowthrough microarray is thermodynamically less favorable than the hybridization of the same sequences in solution.  相似文献   

14.
The purpose of this study was to determine the cellular distribution and degradation in rat liver following intravenous injection of superparamagnetic iron oxide nanoparticles used for magnetic resonance imaging (NC100150 Injection). Relaxometric and spectrophotometric methods were used to determine the concentration of the iron oxide nanoparticles and their degradation products in isolated rat liver parenchymal, endothelial and Kupffer cell fractions. An isolated cell phantom was also constructed to quantify the effect of the degradation products on the loss of MR signal in terms of decreased transverse relaxation times, T2*. The results of this study show that iron oxide nanoparticles found in the NC100150 Injection were taken up and distributed equally in both liver endothelial and Kupffer cells following a single 5 mg Fe/kg body wt. bolus injection in rats. Whereas endothelial and Kupffer cells exhibited similar rates of uptake and degradation, liver parenchymal cells did not take up the NC100150 Injection iron oxide particles. Light-microscopy methods did, however, indicate an increased iron load, presumably as ferritin/hemosiderin, within the hepatocytes 24 h post injection. The study also confirmed that compartmentalisation of ferritin/hemosiderin may cause a significant decrease in the MRI signal intensity of the liver. In conclusion, the combined results of this study imply that the prolonged presence of breakdown product in the liver may cause a prolonged imaging effect (in terms of signal loss) for a time period that significantly exceeds the half-life of NC100150 Injection iron oxide nanoparticles in liver.  相似文献   

15.
The reactions of Ln(NO3)3 · xH2O, CoSO4 · 7H2O or ZnSO4 · 6H2O and 2-pyridylphosphonic acid under hydrothermal conditions result in heterometallic phosphonate compounds with formula [Ln2M3(C5H4NPO3)6] · 4H2O (Ln2M3; M = CoII or ZnII; Ln = LaIII, CeIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII). These compounds are isostructural and crystallize in a chiral cubic space group I213. Each structure contains the {LnO9} polyhedra and {MN2O4} octahedra which are connected by edge-sharing to form an inorganic open-framework structure with a 3-connected 10-gon (10, 3) topology. The nature of LnIII-CoII magnetic interactions in Ln2Co3 is investigated by a comparison with their LnIII-ZnII analogues. It is found that the LnIII-CoII interaction is weak antiferromagnetic for Ln = Ce and ferromagnetic for Ln = Sm, Gd, Tb and Dy. In the cases of Ln = Pr, Nd and Eu, no significant magnetic interaction is observed.  相似文献   

16.
The origin of the difference between the equilibrium (affinity) constants of ligand-receptor binding in bulk solution and at a solid-solution interface is discussed in terms of Gibbsian interfacial thermodynamics. It results that the difference is determined by the surface work that the ligand-receptor interaction spends to accommodate surface binding, and in turn that the value of the surface equilibrium constant (strongly) depends on the surface that confines the event. This framework consistently describes a wide set of experimental observations of DNA surface hybridization, correctly predicting that within the surface work window for DNA hybridization, that ranges from -90 to 75 kJ mol(-1), the ratio between surface and bulk equilibrium constants ranges from 10(-16) to 10(13), spanning 29 orders of magnitude.  相似文献   

17.
ABSTRACT

DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) enables detection and quantification of DNA breakage in the entire genome or within specific DNA sequences in single cells. We used this method to visualize and evaluate DNA damage in pigeon erythrocytes that were induced by elevated temperature and hydrogen peroxide. We also examined morphological changes in the cell nuclei. DBD-FISH demonstrated a significant increase of DNA damage in a temperature dependent manner, which resulted in nuclear abnormalities associated with apoptotic cells. These cells gave strong nuclear fluorescent signals that indicated cell death.  相似文献   

18.
Bacterial magnetic particles (BMPs) were modified with 3-[2-(2-aminoethylamino)-ethylamino]-propyltrimethoxysilane (AEEA) to produce a dense amine surface. Modification of BMPs in a toluene solution resulted in an increased amine yield, and approximately 11.3 x 10(4) surface amines were detected on a single particle. The modified BMPs were capable of efficient electrostatic capture of DNA. The maximum amount of DNA captured on 10 microg of aminosilane-modified BMPs was 600 ng. A 10 mM phosphate buffer effectively released the captured DNA. This efficiency was dramatically enhanced by incubation at 80 degrees C and DNA recovery from aminosilane-modified BMPs approached 95%. DNA extraction from whole blood using these modified BMPs, followed by PCR, was successfully performed. Furthermore, automated single nucleotide polymorphism (SNP) detection of the aldehyde dehydrogenase 2 (ALDH2) was demonstrated.  相似文献   

19.
A conceptually new technique for fast DNA detection has been developed. Here, we report a fast and sensitive online fluorescence resonance energy transfer (FRET) detection technique for label-free target DNA. This method is based on changes in the FRET signal resulting from the sequence-specific hybridization between two fluorescently labelled nucleic acid probes and target DNA in a PDMS microfluidic channel. Confocal laser-induced microscopy has been used for the detection of fluorescence signal changes. In the present study, DNA hybridizations could be detected without PCR amplification because the sensitivity of confocal laser-induced fluorescence detection is very high. Two probe DNA oligomers (5'-CTGAT TAGAG AGAGAA-TAMRA-3' and 5'-TET-ATGTC TGAGC TGCAGG-3') and target DNA (3'-GACTA ATCTC TCTCT TACAG GCACT ACAGA CTCGA CGTCC-5') were introduced into the channel by a microsyringe pump, and they were efficiently mixed by passing through the alligator teeth-shaped PDMS microfluidic channel. Here, the nucleic acid probes were terminally labelled with the fluorescent dyes, tetrafluororescein (TET) and tetramethyl-6-carboxyrhodamine (TAMRA), respectively. According to our confocal fluorescence measurements, the limit of detection of the target DNA is estimated to be 1.0 x 10(-6) to 1.0 x 10(-7)M. Our result demonstrates that this analytical technique is a promising diagnostic tool that can be applied to the real-time analysis of DNA targets in the solution phase.  相似文献   

20.
Recent updates on Magnetic Nano-Particles (MNPs) based separation of nucleic acids have received more attention due to their easy manipulation, simplicity, ease of automation and cost-effectiveness. It has been indicated that DNA molecules absorb on solid surfaces via hydrogen-bonding, and hydrophobic and electrostatic interactions. These properties highly depend on the surface condition of the solid support. Therefore, surface modification of MNPs may enhance their functionality and specification. In the present study, we functionalized Fe3O4 nano-particle surface utilizing SiO2 and TiO2 layer as Fe3O4/SiO2 and Fe3O4/SiO2/TiO2 and then compare their functionality in the adsorption of plasmid DNA molecules with the naked Fe3O4 nano-particles. The result obtained showed that the purity and amount of DNA extracted by Fe3O4 coated by SiO2 or SiO2/TiO2 were higher than the naked Fe3O4 nano-particles. Furthermore, we obtained pH 8 and 1.5 M NaCl as an optimal condition for desorption of DNA from MNPs. The result further showed that, 0.2 mg nano-particle and 10 min at 55 °C are the optimal conditions for DNA desorption from nano-particles. In conclusion, we recommended Fe3O4/SiO2/TiO2 as a new MNP for separation of DNA molecules from biological sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号