首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we investigated the expression of bone morphogenetic protein (BMP)-signaling Smads in distraction osteogenesis (DO). Osteotomy of the right tibia was performed in 14 skeletally mature white New Zealand male rabbits. Lengthening was started 1 week later at a rate of 0.5 mm/12 hr and was maintained for 3 weeks. Expression of Smad proteins 1, 4, 5, 6, 7, and 8 and Smad ubiquitin regulatory factors (Smurfs) 1 and 2 was evaluated in the distracted zone using immunohistochemistry. Expression of receptor-regulated Smads (R-Smads) 1, 5, and 8 showed a significant increase during the distraction phase, followed by a gradual decrease during the consolidation phase. Smad 4 showed significant expression during both distraction and the beginning of the consolidation phase. Smad 6 and Smad 7 were highly expressed during the consolidation phase. Staining for both Smurfs 1 and 2 was maximal at the end of the distraction period. Staining for all proteins was most intense in chondrocyte and fibroblast-like cells. Expression pattern of R-Smads correlated with our previously reported expression pattern of BMPs 2, 4, and 7 and their receptors. These results therefore suggest a role for the whole BMP signaling pathway including the Smad proteins in DO.  相似文献   

2.
The molecular mechanisms by which bone morphogenetic proteins (BMPs) promote skeletal cell differentiation were investigated in the murine mesenchymal stem cell line C3H10T1/2. Both BMP-7 and BMP-2 induced C3H10T1/2 cells to undergo a sequential pattern of chondrogenic followed by osteogenic differentiation that was dependent on both the concentration and the continuous presence of BMP in the growth media. Differentiation was determined by the expression of chondrogenesis and osteogenesis associated matrix genes. Subsequent experiments using BMP-7 demonstrated that withdrawal of BMP from the growth media led to a complete loss of skeletal cell differentiation accompanied by adipogenic differentiation of these cells. Continuous treatment with BMP-7 increased the expression of Sox9, Msx 2, and c-fos during the periods of chondrogenic differentiation after which point their expression decreased. In contrast, Dlx 5 expression was induced by BMP-7 treatment and remained elevated throughout the time-course of skeletal cell differentiation. Runx2/Cbfa1 was not detected by ribonuclease protection assay (RPA) and did not appear to be induced by BMP-7. The sequential nature of differentiation of chondrocytic and osteoblastic cells and the necessity for continuous BMP treatment to maintain skeletal cell differentiation suggests that the maintenance of selective differentiation of the two skeletal cell lineages might be dependent on BMP-7-regulated expression of other morphogenetic factors. An examination of the expression of Wnt, transforming growth factor-beta (TGF-beta), and the hedgehog family of morphogens showed that Wnt 5b, Wnt 11, BMP-4, growth and differentiation factor-1 (GDF-1), Sonic hedgehog (Shh), and Indian hedgehog (Ihh) were endogenously expressed by C3H10T1/2 cells. Wnt 11, BMP-4, and GDF-1 expression were inhibited by BMP-7 treatment in a dose-dependent manner while Wnt 5b and Shh were selectively induced by BMP-7 during the period of chondrogenic differentiation. Ihh expression also showed induction by BMP-7 treatment, however, the period of maximal expression was during the later time-points, corresponding to osteogenic differentiation. An interesting phenomenon was that BMP-7 activity could be further enhanced twofold by growing the cells in a more nutrient-rich media. In summary, the murine mesenchymal stem cell line C3H10T1/2 was induced to follow an endochondral sequence of chondrogenic and osteogenic differentiation dependent on both dose and continual presence of BMP-7 and enhanced by a nutrient-rich media. Our preliminary results suggest that the induction of osteogenesis is dependent on the secondary regulation of factors that control osteogenesis through an autocrine mechanism.  相似文献   

3.
4.
The mRNA expression patterns of several bone morphogenetic proteins (BMPs) and their receptors (BMPRs) in long-term primary cultures of fetal rat calvaria (FRC) cells were examined by Northern analysis. Their temporal orders of expression were correlated with those of several biochemical markers characteristic of osteoblastic cell differentiation. Distinct temporal patterns of expression of BMPs and BMPRs during osteoblastic cell differentiation were observed. BMP-2 and BMP-7 mRNA levels did not change significantly. BMP-4 mRNA expression increased and reached a peak prior to matrix formation. BMP-5 mRNA expression increased during the mineralization phase and BMP-6 mRNA expression increased throughout all phases of cell differentiation. Effects of BMP-7 (Osteogenic Protein-1; OP-1) on the expression patterns of several other members of the BMP family and the receptors were also studied. OP-1 downregulated the BMP-4, -5, and -6 mRNA levels by a maximal of 2-fold, 1.5-fold, and 6-fold, respectively. OP-1 did not change significantly the OP-1 and BMP-2 mRNA expression. Of the three type I BMPR examined, OP-1 upregulated ActR-I and BMPR-IA mRNA expression slightly but with statistical significance. OP-1 downregulated BMPR-IB mRNA expression slightly. OP-1 upregulated BMPR-II mRNA expression by a maximum of 2-fold. Our findings demonstrate that OP-1 differentially regulates the mRNA expression of several related members of the BMP family and their receptors in osteoblasts. The observations suggest that OP-1 action on osteoblastic cells involves a complex regulation of gene expression of related members of the BMP family and their receptors in a cell differentiation stage dependent manner.  相似文献   

5.
The purpose of this investigation was to study the effect of bone morphogenetic protein (BMP), transforming growth factor beta-induced gene h3 (betaig-h3), and chitosan on early bony consolidation in distraction osteogenesis in a dog model. Sixteen dogs were used for this study. The lateral surface of the mandibular body was exposed in the subperiosteal plane and the vertical osteotomy on the mandibular body was extended downward. An external distraction device was applied to the mandibular body, and the mandibular distraction was started 5 days after the operation at a rate of 2 mm/day up to a 10-mm distraction after 5 days. The experimental group was then divided into a control group, a BMP group, a betaig-h3 group, and a chitosan group, depending on the type of implantation material used in the distracted area. On the same day after completing the distraction, BMP, betaig-h3, or chitosan was implanted into the distracted area. No material was implanted into the distracted area in the control group. After implanting the materials, the distraction device was left in place for 7 weeks to allow for bony consolidation. Four dogs were allocated to each group. Two dogs in each group, a total of eight dogs, were killed 4 weeks after completing the distraction and the other eight dogs were killed after 7 weeks. Serial radiographs were obtained every week after completing the distraction. New bone was generated in the distracted zone in all groups. In the BMP group, the formation of active woven bone was observed throughout the distracted zone, and the new bone appeared to be nearly normal cortical bone 7 weeks after implantation. In the betaig-h3 and chitosan groups, the development of new bone was observed in the distracted zone after 7 weeks; however, the amount was less than that in the BMP group. In the control group, the new bone was observed at the edges of the distracted zone. These findings suggest that BMP seems to be very effective in early bony consolidation in distraction osteogenesis.  相似文献   

6.
Transforming growth factor-beta (TGF-beta), one of the most abundant cytokines in bone matrix, has positive and negative effects on bone formation, although the molecular mechanisms of these effects are not fully understood. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, induce bone formation in vitro and in vivo. Here, we show that osteoblastic differentiation of mouse C2C12 cells was greatly enhanced by the TGF-beta type I receptor kinase inhibitor SB431542. Endogenous TGF-beta was found to be highly active, and induced expression of inhibitory Smads during the maturation phase of osteoblastic differentiation induced by BMP-4. SB431542 suppressed endogenous TGF-beta signaling and repressed the expression of inhibitory Smads during this period, possibly leading to acceleration of BMP signaling. SB431542 also induced the production of alkaline phosphatase and bone sialoprotein, and matrix mineralization of human mesenchymal stem cells. Thus, signaling cross-talk between BMP and TGF-beta pathways plays a crucial role in the regulation of osteoblastic differentiation, and TGF-beta inhibitors may be invaluable for the treatment of various bone diseases by accelerating BMP-induced osteogenesis.  相似文献   

7.
8.
Distraction osteogenesis is a well-established method of endogenous tissue engineering. This technique has significantly augmented our armamentarium of reconstructive craniofacial procedures. Although the histologic and ultrastructural changes associated with distraction osteogenesis have been extensively described, the molecular mechanisms governing successful membranous distraction remain unknown. Using an established rat model, the molecular differences between successful (i.e., osseous union with gradual distraction) and ineffective (i.e., fibrous union with acute lengthening) membranous bone lengthening was analyzed. Herein, the first insight into the molecular mechanisms of successful membranous bone distraction is provided. In addition, these data provide the foundation for future targeted therapeutic manipulations designed to improve osseous regeneration. Vertical mandibular osteotomies were created in 52 adult male Sprague-Dawley rats, and the animals were fitted with customized distraction devices. Twenty-six animals underwent immediate acute lengthening (3 mm; a length previously shown to result in fibrous union) and 26 animals were gradually distracted (after a 3-day latency period, animals were distracted 0.25 mm twice daily for 6 days; total = 3 mm). Four mandibular regenerates were harvested from each group for RNA analysis on 5, 7, 9, 23, and 37 days postoperatively (n = 40). Two mandibular regenerates were also harvested from each group and prepared for immunohistochemistry on postoperative days 5, 7, and 37 (n = 12). In addition to the 52 experimental animals, 4 control rats underwent sham operations (skin incision only) and mandibular RNA was immediately collected. Control and experimental specimens were analyzed for collagen I, osteocalcin, tissue inhibitor of metalloproteinase-1, and vascular endothelial growth factor mRNA and protein expression. In this study, marked elevation of critical extracellular matrix molecules (osteocalcin and collagen I) during the consolidation phase of gradual distraction compared with acute lengthening is demonstrated. In addition, the expression of an inhibitor of extracellular matrix turnover, tissue inhibitor of metalloproteinase-1, remained strikingly elevated in gradually distracted animals. Finally, this study demonstrated that neither gradual distraction nor acute lengthening appreciably alters vascular endothelial growth factor expression. These results suggest that gradual distraction osteogenesis promotes successful osseous bone repair by regulating the expression of bone-specific extracellular matrix molecules. In contrast, decreased production or increased turnover of bone scaffolding proteins (i.e., collagen) or regulators of mineralization (i.e., osteocalcin) may lead to fibrous union during acute lengthening.  相似文献   

9.
10.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily of growth factors and are used clinically to induce new bone formation. The purpose of this study was to evaluate receptor utilization by BMP-2, BMP-4, BMP-6, and BMP-7 in primary human mesenchymal stem cells (hMSC), a physiologically relevant cell type that probably mediates the in vivo effects of BMPs. RNA interference-mediated gene knockdown revealed that osteoinductive BMP activities in hMSC are elicited through the type I receptors ACVR1A and BMPR1A and the type II receptors ACVR2A and BMPR2. BMPR1B and ACVR2B were expressed at low levels and were not found to play a significant role in signaling by any of the BMPs evaluated in this study. Type II receptor utilization differed significantly between BMP-2/4 and BMP-6/7. A greater reliance on BMPR2 was observed for BMP-2/4 relative to BMP-6/7, whereas ACVR2A was more critical to signaling by BMP-6/7 than BMP-2/4. Significant differences were also observed for the type I receptors. Although BMP-2/4 used predominantly BMPR1A for signaling, ACVR1A was the preferred type I receptor for BMP-6/7. Signaling by both BMP-2/4 and BMP-6/7 was mediated by homodimers of ACVR1A or BMPR1A. A portion of BMP-2/4 signaling also required concurrent BMPR1A and ACVR1A expression, suggesting that BMP-2/4 signal in part through ACVR1A/BMPR1A heterodimers. The capacity of ACVR1A and BMPR1A to form homodimers and heterodimers was confirmed by bioluminescence resonance energy transfer analyses. These results suggest different mechanisms for BMP-2/4- and BMP-6/7-induced osteoblastic differentiation in primary hMSC.  相似文献   

11.
Distraction osteogenesis is a well-established clinical treatment for limb length discrepancy and skeletal deformities. In our previous studies, we have shown that the tension at the distraction gap correlated with the plasma bone specific alkaline phosphatase activity during distraction. Transforming growth factor-beta1 (TGF-beta1) has been shown to have a regulatory role in alkaline phosphatase activity during fracture healing. This study is to investigate the expression of TGF-beta1 during distraction as a biological response to mechanically stimulated osteoblastic activity by immunohistochemistry. The expression of TGF-beta1 in the distraction callus was compared with that in the fracture callus. During the distraction phase, the osteoblasts and osteocytes expressed a high level of TGF-beta1. Moderate expression of TGF-beta1 was observed in fibroblast-like cells in the fibrous zone of the distraction callus. After the distraction stopped, the expression of TGF-beta1 in different cell types decreased. In fracture healing, the strong expression of TGF-beta1 declined after the first week. Our results showed that the mechanical force induced and sustained TGF-beta1 expression in osteoblasts and fibroblasts-like cells of the distraction callus. Transforming growth factor-beta1 may play a role in transducing mechanical stimulation to biological tissue during in distraction osteogenesis.  相似文献   

12.
Bone morphogenetic proteins (BMPs) induce osteoblastic responses in cultures of pluripotent mesenchymal cells. The effects of chronic treatment of these cells with BMPs and of withdrawal following exposure, however, have not been fully elucidated. Thus, the aim of this study was to obtain information about the duration of exposure to recombinant human BMP-2 (rhBMP-2) required for expression and retention of osteoblastic characteristics with subsequent formation of a mineralized extracellular matrix in mesenchymal cell cultures. C3H10T1/2 cells and bone marrow stromal cells were cultured with 1 μg/ml rhBMP-2 for either 0, 7, 14, 21, or 28 days, with the remainder of the 4 week total culture period in the absence of rhBMP-2. Growth and expression of osteoblastic characteristics were examined at the end of each week. C3H10T1/2 cells responded to increasing duration of exposure to rhBMP-2 with increased cell growth. Additionally, the longer the cells were exposed to rhBMP-2, the more fully they expressed and sustained osteoblastic traits, i.e., they exhibited duration of exposure-dependent higher levels of alkaline phosphatase and osteocalcin and larger total amounts of mineral in the matrix. In comparison, exposure of bone marrow stromal cells to rhBMP-2 for at least 14 days restrained cell growth and prevented detachment. With respect to osteoblastic traits, stromal cells exposed to rhBMP-2 also exhibited a dependence on the duration of exposure, however, cultures treated for 14, 21, or 28 days exhibited similar levels of alkaline phosphatase activity and comparable amounts of calcium in the mineralizing matrix. J. Cell. Physiol. 173:93–101, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Popularized by Gavril Ilizarov in the 1960s, monofocal distraction osteogenesis has become a well-established method of endogenous bone engineering. This revolutionary surgical technique has significantly augmented the available reconstructive orthopedic and craniomaxillofacial procedures. Bifocal distraction osteogenesis, or bone transportation, is a modification of monofocal distraction that involves moving a free segment of living bone to fill an intercalary bone defect. Bifocal distraction has been applied successfully to reconstruct complex mandibular and long bone defects. Because traumatic or postsurgical calvarial defects do not spontaneously heal in humans older than 18 to 24 months of age, we hypothesized that bifocal distraction osteogenesis could be applied to the skull to close critical size calvarial defects. Critical size (15 x 15 mm) calvarial defects were created in eight New Zealand White rabbits. Next, a 15-mm x 10-mm calvarial box osteotomy was created just anterior to the skull defect. This osteotomy created a free bone segment that could be transported. A custom-made transport distraction device was fixed into place and the skin incision was closed. After a 4-day latency period, the distraction device was activated (0.5 mm once daily for 30 days) in seven animals; the distraction device in one animal was not activated and served as a control. All animals underwent 30 days of consolidation and were then killed. Radiographs and computed tomographic scans were performed at the following time points: end of latency period (postoperative day 4), mid-distraction (postoperative day 19), and end of consolidation period (postoperative day 64). Gross and histologic analysis was performed to evaluate the quality of the bony regenerate. The control animal healed with a fibrous union. Complete closure of the skull defects was observed in five of seven rabbits at the end of the consolidation period. One animal was removed from the study because of an early loosening of the distraction device, and one was removed because of device failure. Of the remaining five animals that completed the distraction protocol, radiographs and computerized tomographic scans showed successful ossification in all five rabbits at the end of the consolidation period. This study suggests that transport distraction osteogenesis is a promising technique that may be applied to a variety of commonly encountered craniofacial problems such as nonhealing calvarial defects.  相似文献   

14.
Avascular necrosis (AVN) is a disorder of the bone repair process which usually results in femoral head (FH) destruction. Bone morphogenetic proteins (BMPs) are the key proteins regulating bone remodelling and healing. BMPs gene expression levels were analyzed in the normal and necrotic sites of osteonecrotic FHs. Quantitative RT-PCR for BMP-2, -4, -6, -7 genes was performed in bone tissue samples from 47 osteonecrotic FHs. Protein levels of BMP-2, -4, -6 were estimated by Western Blot. Statistical analysis was performed using the Wilcoxon signed rank test. BMP-2 and BMP-6 mRNA levels were higher in the normal than the necrotic site (normal/necrotic: 16.8/6.8 and 1.75/1.64, respectively). On the contrary, BMP-4 mRNA levels were higher in the necrotic (0.75) than the normal (0.62), while BMP-7 mRNA levels were extremely low. At the protein level, BMP-2 continued to have a higher expression in the normal region (normal/necrotic: 0.67/0.64). BMP-4 and -6 were detected at higher levels in the necrotic site (normal/necrotic: 0.51/0.61 for BMP-4, 0.51/0.56 for BMP-6), while BMP-7 was not detectable. Different BMP levels between the normal and necrotic site, as well as discrepancies between the gene and protein expression pattern suggest a different regulation mechanism for BMPs between the two regions of FHs. The understanding of the expression pattern and the correlation of BMPs could lead to a more successful use in the prevention and treatment of AVN.  相似文献   

15.
Both BMPs and Wnts play important roles in the regulation of bone formation. We examined the molecular mechanism regulating cross-talk between BMPs and Wnts in the osteoblastic differentiation of C2C12 cells. Canonical Wnts (Wnt1 and Wnt3a) but not non-canonical Wnts (Wnt5a and Wnt11) synergistically stimulated ALP activity in the presence of BMP-4. Wnt3a and BMP-4 synergistically stimulated the expression of type I collagen and osteonectin. However, Wnt3a did not stimulate ALP activity that was induced by a constitutively active BMP receptor or Smad1. Noggin and Dkk-1 suppressed the synergistic effect of BMP-4 and Wnt3a, but Smad7 did not. Overexpression of β-catenin did not affect BMP-4-induced ALP activity. By contrast, inhibition or stimulation of GSK3β activity resulted in either stimulation or suppression of ALP activity, respectively, in the presence of BMP-4. Taken together, these findings suggest that BMPs and canonical Wnts may regulate osteoblastic differentiation, especially at the early stages, through a GSK3β-dependent but β-catenin-independent mechanism.  相似文献   

16.
17.
Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.  相似文献   

18.
Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells   总被引:7,自引:0,他引:7  
Bone morphogenetic proteins (BMPs) initiate, promote, and maintain chondrogenesis and osteogenesis. We hypothesize that BMP-2 induces an osteogenic, and BMP-7 a chondrogenic phenotype in adipose tissue-derived mesenchymal stem cells (AT-MSCs). We compared the effects of a short 15min BMP-2 or BMP-7 (10ng/ml) treatment on osteogenic and chondrogenic differentiation of AT-MSCs. Gene expression was studied 4 and 14 days after BMP-treatment. At day 4 BMP-2, but not BMP-7, stimulated runx-2 and osteopontin gene expression, and at day 14 BMP-7 down-regulated expression of these genes. At day 4 BMP-2 and BMP-7 stimulated biglycan gene expression, which was down-regulated by BMP-7 at day 14. BMP-7 stimulated aggrecan gene expression at day 14. Our data indicate that BMP-2 treatment for 15min induces osteogenic differentiation, whereas BMP-7 stimulates a chondrogenic phenotype of AT-MSCs. Therefore, AT-MSCs triggered for only 15min with BMP-2 or BMP-7 provide a feasible tool for bone and cartilage tissue engineering.  相似文献   

19.
The injured growth plate cartilage is often repaired by bony tissue, resulting in impaired bone growth in children. Bone morphogenic proteins (BMPs) are important for bone fracture repair, and as a step to characterize potential involvement of BMPs in bony repair of injured growth plate, expression of BMPs and receptors (BMP-R) was examined by quantitative RT-PCR and immunohistochemistry in rat injured tibial growth plate. During the inflammatory response on day 1, slightly increased expression of BMP-3, BMP-4, BMP-R1a, and BMP-R2 was observed, with immunostaining seen among inflammatory cells at the injury site. During mesenchymal infiltration and osteogenic responses on days 3-14, moderately increased expression of BMP-2, -3, -4, -7, and BMP-R1a was found, with immunostaining observed among infiltrated mesenchymal cells and differentiated osteoblasts lining bony trabeculae. During maturation phase on days 14-25, only BMP-7 was seen upregulated slightly and was localized in osteoblasts and marrow cells at the injury site. The temporospatial expression of BMPs and receptors at the injured growth plate suggests potential involvement of BMP-3 and -4 in regulating the inflammatory response or as its mediators in modulating downstream events, and BMP-2, -3, -4, and -7 in the fibrogenic and osteogenic responses, and BMP-7 in bone remodeling at the injured growth plate.  相似文献   

20.
Distraction osteogenesis is a technique for skeletal lengthening that exploits the body's innate capacity for bone formation in response to tension forces on the repair callus. The authors developed a distraction osteogenesis model with a semiburied device in the Yucatan minipig mandible because of similarities between human and porcine mandibular anatomy, temporomandibular function, chewing patterns, and bone turnover rates. The purpose of this study was to measure histomorphometric bone fill after different latency periods, rates of distraction, and duration of neutral fixation in the minipig mandible. In addition, the relationship between histomorphometric bone fill and clinical stability was investigated. Mandibular osteotomies in 20 female Yucatan minipigs weighing 25 to 30 kg were distracted with modified semiburied distraction devices. Variables included 0-day or 4-day latency; 1-mm, 2-mm, or 4-mm daily distraction rates; gap size of 7 or 12 mm; and evaluation after neutral fixation for various lengths of time. Specimens were fixed in 2% paraformaldehyde, pH 7.4, before being embedded in methylmethacrylate. Sections were prepared from the region just below the inferior alveolar canal. The area of new bone formation within the gap was measured and expressed as a percentage of the total area of the distraction gap. Bone fill ranged from 0 to 100 percent. A pilot study with 7-mm advancements showed similar bone fill with 0-day or 4-day latency, but with poor reproducibility. Mandibles that were distracted to 12 mm at 1 mm per day exhibited nearly complete bone fill, either with 0-day latency (average, 93 percent) or 4-day latency (average, 100 percent). Mandibles that had been distracted for 3 days at 4 mm per day showed moderate osteogenesis and clinical stability with increasing time of neutral fixation. Bone fill was significantly correlated with clinical stability (Spearman r = 0.801, p = 0.001). Histological examination showed exuberant periosteal osteogenesis in distracted mandibles, even in those that showed poor bone fill and clinical stability. Thus, the periosteum appears to be a major source of new bone formation. These results show that osteogenesis was nearly complete with 1 mm per day and 0-day or 4-day latency. These results are consistent with the authors' previously reported clinical and radiographic observations that a latency period is not necessary for successful healing of the mandibular distraction osteogenesis wound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号