首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dark-grown seedlings of the lip1 (light independent photomorphogenesis) mutant of Pisum sativum L. display many features of de-etiolated growth and are similar in many respects to wild-type (WT) seedlings grown in the light. The involvement of gibberellins (GAs) with the mutant phenotype was examined by applying GA1 and GA20 to the mutant and WT, and by quantifying endogenous GA1, GA8, GA19, GA20, and GA29 levels in the two genotypes. These experiments were conducted in both the light and the dark. In neither environment could GA application restore elongation in the mutant to that in GA-treated WT plants. Quantification of GAs provided further evidence that the mutant phenotype is not attributable to a deficiency in endogenous GA1. However, dark-grown lip1 seedlings contained lower levels of GA19 and higher levels of GA20 than dark-grown WT plants, whereas in the light, the effect of the mutation on the ratio of GA19 to GA20 was reversed. Thus, there appears to be a complex interaction between the lip1 mutation, the light regime, and the step GA19 to GA20.  相似文献   

2.
The diurnal regulation of gibberellin (GA) concentrations in Sorghum bicolor was studied in a mutant lacking a light-stable 123-kD phytochrome (ma3Rma3R), wild-type (ma3ma3,Ma3Ma3), and heterozygous (ma3ma3R) cultivars. GAs were determined in shoots of 14-d-old plants by gas chromatography-selected ion-monitoring-mass spectrometry. GA12 levels fluctuated rhythmically in Ma3Ma3, ma3ma3, and,ma3Rma3R; Peak levels occured 3 to 9 h after lights-on. In some experiments, GA53 levels followed a similar pattern. There was no rhythmicity in levels of GA19 and GA8 in any genotype. In ma3ma3 and Ma3Ma3, GA20 levels increased at lights-on, peaked in the afternoon, and decreased to minimum levels in darkness. In ma3Rma3R, peak GA20 levels occured at lights-on, 9 h earlier than in the wild-type genotypes. The pattern for GA1 levels closely followed GA20 levels in all cultivars. One copy of ma3 restored near wild-type regulation of GA20 levels. GA rhythms persisted in 25-d-old ma3ma3 plants. Since absence of the 123-kD phytochrome disrupted diurnal regulation of the GA19 -> GA20 step, the ma3Rma3R genotype may be viewed as being phase shifted in the rhythmic levels of GA20 and GA1 rather than as simply overproducing them.  相似文献   

3.
After the application of [13C3H]-gibberellin A20 to wild-type (tall) sweet peas ( Lathyrus odoratus L.) labelled gibberellin A1 (GA1), GA8, GA29 and 2-epiGA29 were identified as major metabolities by gas chromatography-mass spectrometry after high performance liquid chromatography. By contrast in genetically comparable dwarf ( II ) plants only labelled GA29 and 2-epiGA29 were produced in significant amounts, although evidence was obtained for trace amounts of labelled GA1 and GA8. The apical portions of dwarf plants contained 8–10 times less GA1 than those of tall plants but at least as much GA20 (measured using di-deuterated internal standards). In conjunction with previous data these results strongly indicate that in genotype ll internode length is reduced and leaf growth altered by a reduction in GA1 levels attributable to a partial block in the 3β-hydroxylation of GA20 to GA1.
In contrast to dwarf plants, semidwarf plants (genotype lblb ) contained more GA1 in the apical portion than wild-type counterparts. This is consistent with the suggestion that lb alters some aspect of GA sensitivity.  相似文献   

4.
5.
A gibberellin insensitive mutant of Arabidopsis thaliana   总被引:10,自引:0,他引:10  
A dwarf mutant of Arabidopsis thaliana (L.) Heynh. was found to be less sensitive to applied gibberellins than the wild type, and this character was controlled by one partially-dominant gene (denoted Gai) located on chromosome 1. This mutant resembled gibberellin-deficient mutants since not only stem growth, but also apical dominanace and seed germination were reduced. However, in contrast to the latter mutants, gibberellin does not reverse these effects in the Gai mutant. The insensitivity of the mutant could be quantified in much more detail in the recombinant of this mutation with the GA deficient mutant ga-1/ga-1 . Endogenous gibberellins of the Gai mutant did not differ from the wild type either in quantity or composition. The data suggest that the gene controls a step involved in gibberellin action.  相似文献   

6.
Phytochrome B affects responsiveness to gibberellins in Arabidopsis.   总被引:21,自引:5,他引:16       下载免费PDF全文
J W Reed  K R Foster  P W Morgan    J Chory 《Plant physiology》1996,112(1):337-342
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. Arabidopsis thaliana seedlings lacking one of the phytochromes, phyB, have elongated hypocotyls and other tissues, suggesting that they may have an alteration in hormone physiology. We have studied the possibility that phyB mutations affect seedling gibberellin (GA) perception and metabolism by testing the responsiveness of wild-type and phyB seedlings to exogenous GAs. The phyB mutant elongates more than the wild type in response to the same exogenous concentrations of GA3 or GA4, showing that the mutation causes an increase in responsiveness to GAs. Among GAs that we were able to detect, we found no significant difference in endogenous levels between wild-type and phyB mutant seedlings. However, GA4 levels were below our limit of detectability, and the concentration of that active GA could have varied between wild-type and phyB mutant seedlings. These results suggest that, although GAs are required for hypocotyl cell elongation, phyB does not act primarily by changing total seedling GA levels but rather by decreasing seedling responsiveness to GAs.  相似文献   

7.
The purpose of this study was to demonstrate the metabolism of gibberellin A20 (GA20) to gibberellin A1 (GA1) by tall and mutant shoots of rice (Oryza sativa L.) and Arabidopsis thaliana (L.) Heynh. The data show that the tall and dx mutant of rice and the tall and ga5 mutant of Arabidopsis metabolize GA20 to GA1. The data also show that the dy mutant of rice and the ga4 mutant of Arabidopsis block the metabolism of GA20 to GA1. [17-13C,3H]GA20 was fed to tall and the dwarf mutants, dx and dy, of rice and tall and the dwarf mutants, ga5 and ga4, of Arabidopsis. The metabolites were analyzed by high-performance liquid chromatography and full-scan gas chromatography-mass spectrometry together with Kovats retention index data. For rice, the metabolite [13C]GA, was identified from tall and dx seedlings; [13C]GA1 was not identified from the dy seedlings. [13C]GA29 was identified from tall, dx, and dy seedlings. For Arabidopsis, the metabolite [13C]GA1 was identified from tall, ga5, and ga4 plants. The amount of [13C]GA1 from ga4 plants was less than 15% of that obtained from tall and ga5 plants. [13C]GA29 was identified from tall, ga5, and ga4 plants. [13C]GA5 and [13C]GA3 were not identified from any of the six types of plant material.  相似文献   

8.
以拟南芥的赤霉素 (GA)缺陷型突变体ga 1,ga 2 ,ga 3和GA不敏感型突变体ga i为材料 ,研究了光和 4种GA对拟南芥种子萌发和幼苗生长影响的相互关系。结果表明 :(1)烯效唑对ga i种子萌发的抑制在光下可明显被GA恢复 ,而在黑暗中GA的作用不明显。 (2 )在光下低浓度的外源GA3 可使ga 1,ga 2和ga 3的种子萌发 ,而在黑暗中同样浓度的GA3 则难以使种子萌发。 (3)光可以降低种子萌发所需求的GA的剂量。 (4 )ga i和ga 1的幼苗的呼吸代谢有明显差异。以上结果说明 :光对拟南芥种子萌发的促进主要是提高了种子对GA反应的敏感性而不是增加GA的生物合成  相似文献   

9.
A. L. Silverstone  PYA. Mak  E. C. Martinez    T. Sun 《Genetics》1997,146(3):1087-1099
We have identified a new locus involved in gibberellin (GA) signal transduction by screening for suppressors of the Arabidopsis thaliana GA biosynthetic mutant ga1-3. The locus is named RGA for repressor of ga1-3. Based on the recessive phenotype of the digenic rga/ga1-3 mutant, the wild-type gene product of RGA is probably a negative regulator of GA responses. Our screen for suppressors of ga1-3 identified 17 mutant alleles of RGA as well as 10 new mutant alleles at the previously identified SPY locus. The digenic (double homozygous) rga/ga1-3 mutants are able to partially repress several defects of ga1-3 including stem growth, leaf abaxial trichome initiation, flowering time, and apical dominance. The phenotype of the trigenic mutant (triple homozygous) rga/spy/ga1-3 shows that rga and spy have additive effects regulating flowering time, abaxial leaf trichome initiation and apical dominance. This trigenic mutant is similar to wild type with respect to each of these developmental events. Because rga/spy/ga1-3 is almost insensitive to GA for hypocotyl growth and its bolting stem is taller than the wild-type plant, the combined effects of the rga and spy mutations appear to allow GA-independent stem growth. Our studies indicate that RGA lies on a separate branch of the GA signal transduction pathway from SPY, which leads us to propose a modified model of the GA response pathway.  相似文献   

10.
Flowering of Nicotiana tabacum cv Xhanti depends on gibberellins because gibberellin-deficient plants, due to overexpression of a gibberellin 2-oxidase gene (35S:NoGA2ox3) or to treatment with the gibberellin biosynthesis inhibitor paclobutrazol, flowered later than wild type. These plants also showed inhibition of the expression of molecular markers related to floral transition (NtMADS-4 and NtMADS-11). To investigate further the role of gibberellin in flowering, we quantified its content in tobacco plants during development. We found a progressive reduction in the levels of GA1 and GA4 in the apical shoot during vegetative growth, reaching very low levels at floral transition and beyond. This excludes these two gibberellins as flowering-promoting factors in the apex. The evolution of active gibberellin content in apical shoots agrees with the expression patterns of gibberellin metabolism genes: two encoding gibberellin 20-oxidases (NtGA20ox1 = Ntc12, NtGA20ox2 = Ntc16), one encoding a gibberellin 3-oxidase (NtGA3ox1 = Nty) and one encoding a gibberellin 2-oxidase (NtGA2ox1), suggesting that active gibberellins are locally synthesized. In young apical leaves, GA1 and GA4 content and the expression of gibberellin metabolism genes were rather constant. Our results support that floral transition in tobacco, in contrast to that in Arabidopsis, is not regulated by the levels of GA1 and GA4 in apical shoots, although reaching a threshold in gibberellin levels may be necessary to allow meristem competence for flowering.  相似文献   

11.
The involvement of lipase in flowering is seldom studied, and this research provides evidence that fatty acids produced by lipase affect flowering. OSAG78 encoding a patatin-like protein was isolated from Oncidium Gower Ramsey. OSAG78 fused with green fluorescent protein was found to localize at the cell membrane. Transgenic Arabidopsis overexpressing OSAG78 demonstrated higher lipase activity than the wild-type control. In addition, the amount of free linoleic acid and linolenic acid in transgenic Arabidopsis was found to be higher than that in the wild type. Transgenics overexpressing OSAG78 exhibited altered phenotypes, including smaller leaves and rounder flowers, and also demonstrated a late flowering phenotype that could be rescued by gibberellin A(3) (GA(3)) application. Several flowering-related genes were analyzed, indicating that the expression of gibberellin-stimulated genes was decreased in the plants overexpressing OSAG78. Also, the expression of AtGA2ox1, AtGA3ox1 and AtGA20ox1 genes encoding GA2-, GA3- and GA20-oxidases, respectively, which are mainly responsible for gibberellin metabolism, was decreased, and the level of GA(4), a bioactive gibberellin, measured by gas chromatography-mass spectrometry was also reduced in the overexpressing lines. Furthermore, the expression levels of AtGA3ox1 and AtGA20ox1 were significantly decreased in wild-type Arabidopsis treated with linoleic acid, linolenic acid or methyl jasmonate. The membrane-bound OSAG78 might hydrolyze phospholipids to release linoleic acid and linolenic acid, and then depress the expression of genes encoding GA3- and GA20-oxidase. These changes reduced the bioactive gibberellin level, and, finally, late flowering occurred. Our results indicate that a patatin-like membrane protein with lipase activity affects flowering through the regulation of gibberellin metabolism.  相似文献   

12.
The SLENDER gene of pea encodes a gibberellin 2-oxidase   总被引:2,自引:0,他引:2  
  相似文献   

13.
A novel elongated mutant has been isolated from EMS-mutagenized populations of the Arabidopsis thaliana ga4 mutant. After backcrossing with the Landsberg erecta ( Ler ) wild-type (WT) followed by selling, the mutant phenotype was identified in the GA4 background. Seedlings of the mutant, which has been named elg (elongated), are characterized by elongated hypocotyls and petioles, leaves that are narrow and somewhat epinastic and early flowering. Allelism tests with the hy1–hy5 mutants indicate that elg is not allelic with any of these long-hypocotyl mutants. From linkage analyses, the location of elg on chromosome 4, between cer2 and ap2 has been established. The pleiotropic phenotype of elg seedlings is suggestive of a disruption of phytochrome and/or gibberellin (GA) function. Although the elg mutant displays a light-dependent long-hypocotyl phenotype, elg seedlings retain a full range of photomorphogenic responses and the elg mutation acts additively with the photomorphogenic mutants phyB, hy1 and hy2 . This suggests that ELG acts independently of phytochrome action. The elg mutation partially suppresses the effect of GA-deficiency on elongation growth, and, although elg ga1 seedlings are more elongated than ga1 seedlings, both genotypes respond in the same way to applied GA. That applied GA and the elg mutation interact additively suggests that ELG acts independently of GA action.  相似文献   

14.
15.
以航空诱变高粱突变体har1为材料,对其幼苗去黄化过程进行研究。萌发的种子在远红光下预培养6小时后,置于12小时蓝光/2小时黑暗条件下培养。测量幼苗的各器官伸长,结果表明,与野生型R111相比,harl的胚芽鞘、中胚轴、第一叶鞘以及第二叶鞘的伸长均受到蓝光的明显抑制,而蓝光对叶片生长影响不明显。3天龄har1黄化苗在连续蓝光下中胚轴花色素苷的积累明显增高,红光和远红光无此效应。此外,蓝光促进har1叶片叶绿体发育,且在蓝光照射24小时后叶片中叶绿素含量升高。Westernblot检测结果显示,7天龄R111和har1幼苗隐花色素SbCRY1b蛋白水平呈现蓝光下低、黑暗中高的变化趋势,har1的SbCRY1b蛋白水平在黑暗中高于R111。研究结果表明,高粱har1在去黄化过程中具有蓝光超敏感表型,SbCRY1b的作用值得进一步深入研究。  相似文献   

16.
Regulation of gibberellin 20-oxidase1 expression in spinach by photoperiod   总被引:2,自引:0,他引:2  
Lee DJ  Zeevaart JA 《Planta》2007,226(1):35-44
  相似文献   

17.
Cryptochromes mediate blue light-dependent photomorphogenic responses, such as inhibition of hypocotyl elongation. To investigate the underlying mechanism, we analyzed a genetic suppressor, scc7-D (suppressors of cry1cry2), which suppressed the long-hypocotyl phenotype of the cry1cry2 (cryptochrome1/cryptochrome2) mutant in a light-dependent but wavelength-independent manner. scc7-D is a gain-of-expression allele of the GA2ox8 gene encoding a gibberellin (GA)-inactivating enzyme, GA 2-oxidase. Although scc7-D is hypersensitive to light, transgenic seedlings expressing GA2ox at a level higher than scc7-D showed a constitutive photomorphogenic phenotype, confirming a general role of GA2ox and GA in the suppression of hypocotyl elongation. Prompted by this result, we investigated blue light regulation of mRNA expression of the GA metabolic and catabolic genes. We demonstrated that cryptochromes are required for the blue light regulation of GA2ox1, GA20ox1, and GA3ox1 expression in transient induction, continuous illumination, and photoperiodic conditions. The kinetics of cryptochrome induction of GA2ox1 expression and cryptochrome suppression of GA20ox1 or GA3ox1 expression correlate with the cryptochrome-dependent transient reduction of GA(4) in etiolated wild-type seedlings exposed to blue light. Therefore we propose that in deetiolating seedlings, cryptochromes mediate blue light regulation of GA catabolic/metabolic genes, which affect GA levels and hypocotyl elongation. Surprisingly, no significant change in the GA(4) content was detected in the whole shoot samples of the wild-type or cry1cry2 seedlings grown in the dark or continuous blue light, suggesting that cryptochromes may also regulate GA responsiveness and/or trigger cell- or tissue-specific changes of the level of bioactive GAs.  相似文献   

18.
蓝光调节高粱突变体har1 幼苗的去黄化反应   总被引:2,自引:0,他引:2  
以航空诱变高粱突变体har1为材料, 对其幼苗去黄化过程进行研究。萌发的种子在远红光下预培养6小时后, 置于12小时蓝光/12小时黑暗条件下培养。测量幼苗的各器官伸长, 结果表明, 与野生型R111相比, har1的胚芽鞘、中胚轴、第一叶鞘以及第二叶鞘的伸长均受到蓝光的明显抑制, 而蓝光对叶片生长影响不明显。3天龄har1黄化苗在连续蓝光下中胚轴花色素苷的积累明显增高, 红光和远红光无此效应。此外, 蓝光促进har1叶片叶绿体发育, 且在蓝光照射24小时后叶片中叶绿素含量升高。Western blot检测结果显示, 7天龄R111和har1幼苗隐花色素SbCRY1b蛋白水平呈现蓝光下低、黑暗中高的变化趋势, har1的SbCRY1b蛋白水平在黑暗中高于R111。研究结果表明, 高粱har1在去黄化过程中具有蓝光超敏感表型,SbCRY1b的作用值得进一步深入研究。  相似文献   

19.
Thirty-six gene sequences encoding the gibberellin (GA) 20-oxidase were obtained from Dasypyrum villosum and its dwarf mutant. Sequence alignment showed that there were 21 SNPs and 4 InDels among these sequences which could be divided into three haplotypes??haplotype I, II, and III with 1,293, 1,297, and 1,294?bp in length, respectively. They contained a CDS with 1,080?bp in length encoding a putative polypeptide of 359 amino acids. Two haplotypes were found in wild type (I and II) and dwarf mutant (II and III), respectively. Q-PCR analysis showed that in the whole growing stages, the majority expression levels of haplotypes from wild types were higher than that of dwarf mutant, suggesting that wild types could synthesize more active GA substrates than dwarf mutant. The expression level in stem nodes and internodes between wild type and dwarf mutant were not significantly different, whereas their expression levels in roots were distinctly distinguished from each other in seedling, stem elongation, and heading stages, implying that most active GAs were synthesized in the root, and some were consumed by the root itself, and the others might be transported to other organs.  相似文献   

20.
Dill A  Sun T 《Genetics》2001,159(2):777-785
RGA and GAI are negative regulators of the gibberellin (GA) signal transduction pathway in Arabidopsis thaliana. These genes may have partially redundant functions because they are highly homologous, and plants containing single null mutations at these loci are phenotypically similar to wild type. Previously, rga loss-of-function mutations were shown to partially suppress defects of the GA-deficient ga1-3 mutant. Phenotypes rescued include abaxial trichome initiation, rosette radius, flowering time, stem elongation, and apical dominance. Here we present work showing that the rga-24 and gai-t6 null mutations have a synergistic effect on plant growth. Although gai-t6 alone has little effect, when combined with rga-24, they completely rescued the above defects of ga1-3 to wild-type or GA-overdose phenotype. However, seed germination and flower development defects were not restored. Additionally, rga-24 and rga-24/gai-t6 but not gai-t6 alone caused increased feedback inhibition of expression of a GA biosynthetic gene in both the ga1-3 and wild-type backgrounds. These results demonstrate that RGA and GAI have partially redundant functions in maintaining the repressive state of the GA-signaling pathway, but RGA plays a more dominant role than GAI. Removing both RGA and GAI function allows for complete derepression of many aspects of GA signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号