首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of nitric oxide (NO) pathway has been well demonstrated in the main invertebrate groups, showing parallel findings on the role of NO in vertebrates and invertebrates. Noteworthy is the example of the role played by the nitrergic pathway in the sensorial functions, mainly in olfactory-like systems. On the other hand, the emerging molecular information about NOSs from lower metazoans (Porifera, cnidarians up to higher invertebrates) suggests that NO pathways might represent examples of a parallel evolution of the NOS prototypes in different animal lineages. Nevertheless, increasing evidence suggests that NO is one of the earliest and most widespread signaling molecules in living organisms.Here, we attempt to provide a survey of current knowledge of the synthesis and possible roles of NO and the related signaling pathway in lower metazoans (i.e., Porifera and Cnidaria), two phyla forming a crucial bridge spanning the evolutionary gap between the protozoans and higher metazoans. From the literature data here reported, it emerges that future research on the biological roles of NO in basal metazoans is likely to be very important for understanding the evolution of signaling systems.  相似文献   

2.
Nitric oxide signaling in invertebrates   总被引:6,自引:0,他引:6  
Nitric oxide (NO) is an unconventional neurotransmitter and neuromodulator molecule that is increasingly found to have important signaling functions in animals from nematodes to mammals. NO signaling mechanisms in the past were identified largely through experiments on mammals, after the discovery of NO's vasodilatory functions. The use of gene knock out mice has been particularly important in revealing the functions of the several isoforms of nitric oxide synthase (NOS), the enzyme that produces NO. Recent studies have revealed rich diversity in NO signaling. In addition to the well-established pathway in which NO activates guanylyl cyclase and cGMP production, redox mechanisms involving protein nitrosylation are important contributors to modulation of neurotransmitter release and reception. NO signaling studies in invertebrates are now generating a wealth of comparative information. Invertebrate NOS isoforms have been identified in insects and molluscs, and the conserved and variable amino acid sequences evaluated. Calcium-calmodulin dependence and cofactor requirements are conserved. NADPH diaphorase studies show that NOS is found in echinoderms, coelenterates, nematodes, annelids, insects, crustaceans and molluscs. Accumulating evidence reveals that NO is used as an orthograde transmitter and cotransmitter, and as a modulator of conventional transmitter release. NO appears to be used in diverse animals for certain neuronal functions, such as chemosensory signalin, learning, and development, suggesting that these NO functions have been conserved during evolution. The discovery of NO's diverse and unconventional signaling functions has stimulated a plethora of enthusiastic investigations into its uses. We can anticipate the discovery of many more interesting and some surprising NO signaling functions.  相似文献   

3.
Since the discovery of the biological effects of nitric oxide (NO) more than two decades ago, NO has been identified as an important physiological modulator and a messenger molecule in mammals. Parallel to these studies, evidence that has accumulated in recent years has revealed that the NO signalling pathway is spread throughout the entire phylogenetic scale, being increasingly found in lower organisms, ranging from Chordata to Mollusca. The present review attempts to provide a survey of current knowledge of the genesis and possible roles of NO and the related signalling pathway in marine invertebrates, with special emphasis on Sepia, a choice dictated by the increasing appreciation of cephalopods as most valuable model systems for studies of NO biology and the present expectation for new exciting insights into as yet little explored segments of NO biology.  相似文献   

4.
In this review we discuss data showing that the endogenous cannabinoid system, represented by cannabinoid receptors, endogenous cannabinoid receptor ligands and enzymes for the biosynthesis and degradation of these ligands, is conserved throughout evolution from coelenterates to man. This signaling system has been suggested to play several roles in animals, including the regulation of cell development and growth, nervous functions, reproduction and feeding behavior. In this article, however, we shall describe with more detail the possible function of the endogenous cannabinoid system in the modulation of immune response in organisms from the lower to the higher levels of animal evolution.  相似文献   

5.
The non-reducing disaccharide trehalose is a singular molecule, which has been strictly conserved throughout evolution in prokaryotes (bacteria and archaea), lower eukaryotes, plants, and invertebrates, but is absent in vertebrates and—more specifically—in mammals. There are notable differences regarding the pivotal roles played by trehalose among distantly related organisms as well as in the specific metabolic pathways of trehalose biosynthesis and/or hydrolysis, and the regulatory mechanisms that control trehalose expression genes and enzymatic activities. The success of trehalose compared with that of other structurally related molecules is attributed to its exclusive set of physical properties, which account for its physiological roles and have also promoted important biotechnological applications. However, an intriguing question still remains: why are vertebrates in general, and mammals in particular, unable (or have lost the capacity) to synthesize trehalose? The search for annotated genomes of vertebrates reveals the absence of any functional trehalose synthase gene. Indeed, this is also true for the human genome, which contains, however, two genes encoding for isoforms of the hydrolytic activity (trehalase). Although we still lack a convincing answer, this striking difference might reflect the divergent evolutionary lineages followed by invertebrates and vertebrates. Alternatively, some clinical data point to trehalose as a toxic molecule when stored inside the human body.  相似文献   

6.
As a cellular signaling molecule, nitric oxide (NO) is widely conserved from microorganisms, such as bacteria, yeasts, and fungi, to higher eukaryotes including plants and mammals. NO is mainly produced by NO synthase (NOS) or nitrite reductase (NIR) activity. There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis based on the balance between NO synthesis and degradation is important for the regulation of its physiological functions because an excess level of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but NO and its signaling have been poorly understood due to the lack of mammalian NOS orthologs in the genome. Even though the activities of NOS and NIR have been observed in yeast cells, the gene encoding NOS and the NO production mechanism catalyzed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain an intracellular redox balance following endogenous NO production, exogenous NO treatment, or environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed here. Such investigations into NO signaling are essential for understanding the NO-dependent genetic and physiological modulations. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signaling may be a potential target for the construction and engineering of industrial yeast strains.  相似文献   

7.
Apoplastic synthesis of nitric oxide by plant tissues   总被引:30,自引:0,他引:30       下载免费PDF全文
Nitric oxide (NO) is an important signaling molecule in animals and plants. In mammals, NO is produced from Arg by the enzyme NO synthase. In plants, NO synthesis from Arg using an NO synthase-type enzyme and from nitrite using nitrate reductase has been demonstrated previously. The data presented in this report strongly support the hypothesis that plant tissues also synthesize NO via the nonenzymatic reduction of apoplastic nitrite. As measured by mass spectrometry or an NO-reactive fluorescent probe, Hordeum vulgare (barley) aleurone layers produce NO rapidly when nitrite is added to the medium in which they are incubated. NO production requires an acid apoplast and is accompanied by a loss of nitrite from the medium. Phenolic compounds in the medium can increase the rate of NO production. The possible significance of apoplastic NO production for germinating grain and for plant roots is discussed.  相似文献   

8.
Mocca B  Wang W 《Journal of bacteriology》2012,194(15):4059-4068
In mammalian cells, nitric oxide (NO·) is an important signal molecule with concentration-dependent and often controversial functions of promoting cell survival and inducing cell death. An inducible nitric oxide synthase (iNOS) in various mammalian cells produces higher levels of NO· from l-arginine upon infections to eliminate pathogens. In this study, we reveal novel pathogenic roles of NO· generated by bacteria in bacterium-host cell cocultures using Moraxella catarrhalis, a respiratory tract disease-causing bacterium, as a biological producer of NO·. We recently demonstrated that M. catarrhalis cells that express the nitrite reductase (AniA protein) can produce NO· by reducing nitrite. Our study suggests that, in the presence of pathophysiological levels of nitrite, this opportunistic pathogen hijacks host cell signaling and modulates host gene expression through its ability to produce NO· from nitrite. Bacterium-generated NO· significantly increases the secretion of tumor necrosis factor alpha (TNF-α) and modulates the expression of apoptotic proteins, therefore triggering host cell programmed death partially through TNF-α signaling. Furthermore, our study reveals that bacterium-generated NO· stalls host cell division and directly results in the death of dividing cells by reducing the levels of an essential regulator of cell division. This study provides unique insight into why NO· may exert more severe cytotoxic effects on fast growing cells, providing an important molecular basis for NO·-mediated pathogenesis in infections and possible therapeutic applications of NO·-releasing molecules in tumorigenesis. This study strongly suggests that bacterium-generated NO· can play important pathogenic roles during infections.  相似文献   

9.
The hunt for plant nitric oxide synthase (NOS): Is one really needed?   总被引:1,自引:0,他引:1  
Fr?hlich A  Durner J 《Plant science》2011,181(4):401-404
Nitric oxide (NO) production is associated with many physiological situations in plants, and NO is a key signaling molecule throughout the lifespan of a plant. The complexity of the underlying signaling events are just starting to be unraveled. The basis for nitric oxide signaling, the production of the signaling molecule itself, is far from understood in plants. While in animals, three homologous NO synthases (NOS) isoforms have been identified, yet in higher plants no corresponding enzymes are known so far. More than half a dozen NO productive reactions have been observed in plants but only few of them have been thoroughly investigated. It remains to be elucidated how these parts act together to form the sophisticated NO signaling network observed in plants.  相似文献   

10.
A novel putative endothelin-converting enzyme (ECE) has been cloned from hydra, a freshwater invertebrate that belongs to the second oldest phylum of the animal kingdom. As an integral component of the endothelin system, vertebrate ECE functions in the activation of endothelin (ET) peptides. Vertebrate ETs are (1) the most potent vasoconstrictors known in mammals; and (2) function as essential signaling ligands during development of tissues derived from neural crest cells. To date, only a limited number of immunocytochemical studies have suggested the presence of endothelin-like peptides in invertebrates. Based on structural and functional analyses, we present evidence for a functional endothelin-like system in hydra that is involved in both muscle contraction and developmental processes. These findings indicate the broad use of endothelin systems in metazoans and also indicate that this type of signaling system arose early in evolution even before divergence of protostomes and deuterostomes.  相似文献   

11.
ABSTRACT: BACKGROUND: The pore-forming protein perforin is central to the granule-exocytosis pathway used by cytotoxic lymphocytes to kill abnormal cells. Although this mechanism of killing is conserved in bony vertebrates, cytotoxic cells are present in other chordates and invertebrates, and their cytotoxic mechanism has not been elucidated. In order to understand the evolution of this pathway, here we characterize the origins and evolution of perforin. RESULTS: We identified orthologs and homologs of human perforin in all but one species analysed from Euteleostomi, and present evidence for an earlier ortholog in Gnathostomata but not in more primitive chordates. In placental mammals perforin is a single copy gene, but there are multiple perforin genes in all lineages predating marsupials, except birds. Our comparisons of these many-to-one homologs of human perforin show that they mainly arose from lineagespecific gene duplications in multiple taxa, suggesting acquisition of new roles or different modes of regulation. We also present evidence that perforin arose from duplication of the ancient MPEG1 gene, and that it shares a common ancestor with the functionally related complement proteins. CONCLUSIONS: The evolution of perforin in vertebrates involved a complex pattern of gene, as well as intron, gain and loss. The primordial perforin gene arose at least 500 million years ago, at around the time that the major histocompatibility complex-T cell receptor antigen recognition system was established. As it is absent from primitive chordates and invertebrates, cytotoxic cells from these lineages must possess a different effector molecule or cytotoxic mechanism.  相似文献   

12.
鱼类Toll样受体及其信号传导的研究进展   总被引:6,自引:0,他引:6  
鱼类是脊椎动物中的一个重要类群, 在其生存与进化的过程中, 免疫系统担负着保护鱼类免受病原感染的重任, 其中Toll样受体家族等介导的先天性免疫是鱼类抗病免疫的第一道防线, 并在连接先天性免疫与获得性免疫反应中起着桥梁作用. 虽然从无脊椎动物到高等脊椎动物, Toll样受体家族内多数成员在蛋白质结构与功能上都较为保守, 但是鱼类作为最低等的脊椎动物, 在其进化过程中又形成了一些特有Toll样受体分子, 其剪接类型也更丰富; 鱼类Toll样受体家族介导的免疫识别、免疫信号传导、激活和调控方式与高等脊椎动物也不尽相同. 文章主要综述了鱼类Toll样受体的结构、种类、功能、多样性、免疫信号传导及其调控特点, 为深入了解鱼类的免疫反应奠定基础.    相似文献   

13.
After the identification of nitric oxide (NO) with the endothelium derived-relaxing factor, many signaling mechanisms involving NO were identified through experiments on Mammals. NO activates soluble guanylyl cyclase leading to the formation of cGMP, stimulates the ADP-ribosylation of GAPDH, altering the cell energy production and combines with superoxide, generating cytotoxic peroxynitrite. NO was then progressively established as a major messenger molecule in Mammals. It is implied in the regulation of blood vessel dilatation, immune function, development and neurotransmission in brain and peripheral nervous system. Later, parallel findings were observed in Invertebrates and then, NO appeared as a signaling molecule widely spread throughout the animal kingdom and whose functions were highly conserved during evolution. The purpose of this short review is to highlight the contribution of Invertebrate studies to the knowledge of NO biology.  相似文献   

14.
15.
A critical process of early oogenesis is the entry of mitotic oogonia into meiosis, a cell cycle switch regulated by a complex gene regulatory network. Although Notch pathway is involved in numerous important aspects of oogenesis in invertebrate species, whether it plays roles in early oogenesis events in mammals is unknown. Therefore, the rationale of the present study was to investigate the roles of Notch signaling in crucial processes of early oogenesis, such as meiosis entry and early oocyte growth. Notch receptors and ligands were localized in mouse embryonic female gonads and 2 Notch inhibitors, namely DAPT and L-685,458, were used to attenuate its signaling in an in vitro culture system of ovarian tissues from 12.5 days post coitum (dpc) fetus. The results demonstrated that the expression of Stra8, a master gene for germ cell meiosis, and its stimulation by retinoic acid (RA) were reduced after suppression of Notch signaling, and the other meiotic genes, Dazl, Dmc1, and Rec8, were abolished or markedly decreased. Furthermore, RNAi of Notch1 also markedly inhibited the expression of Stra8 and SCP3 in cultured female germ cells. The increased methylation status of CpG islands within the Stra8 promoter of the oocytes was observed in the presence of DAPT, indicating that Notch signaling is probably necessary for maintaining the epigenetic state of this gene in a way suitable for RA stimulation. Furthermore, in the presence of Notch inhibitors, progression of oocytes through meiosis I was markedly delayed. At later culture periods, the rate of oocyte growth was decreased, which impaired subsequent primordial follicle assembly in cultured ovarian tissues. Taken together, these results suggested new roles of the Notch signaling pathway in female germ cell meiosis progression and early oogenesis events in mammals.  相似文献   

16.
Nitric oxide (NO) is a widespread signaling molecule, and numerous targets of its action exist in plants. Whereas the activity of NO in erythrocytes, microorganisms, and invertebrates has been shown to be regulated by several hemoglobins, the function of plant hemoglobins in NO detoxification has not yet been elucidated. Here, we show that Arabidopsis thaliana nonsymbiotic hemoglobin AHb1 scavenges NO through production of S-nitrosohemoglobin and reduces NO emission under hypoxic stress, indicating its role in NO detoxification. However, AHb1 does not affect NO-mediated hypersensitive cell death in response to avirulent Pseudomonas syringae, suggesting that it is not involved in the removal of NO bursts originated from acute responses when NO mediates crucial defense signaling functions.  相似文献   

17.
What is the role of the cannabinoid system in invertebrates and can it tell us something about the human system? We discuss in this review the possible presence of the cannabinoid system in invertebrates. Endocannabinoid processes, i.e., enzymatic hydrolysis, as well as cannabinoid receptors and endocannabinoids, have been identified in various species of invertebrates. These signal molecules appear to have multiple roles in invertebrates; diminishing sensory input, control of reproduction, feeding behavior, neurotransmission and antiinflammatory actions. We propose that since this system worked so well, it was retained during evolution, and that invertebrates can serve as a model to study endogenous cannabinoid signaling.  相似文献   

18.
茉莉酸甲酯:一种重要的植物信号转导分子   总被引:6,自引:0,他引:6  
作为一种信号转导分子,茉莉酸甲酯在植物生长发育、代谢调节、抗病、耐逆、防御相关基因的诱导表达等方面均起着重要的作用。由于茉莉酸甲酯所具有的上述多效性,其作用与机制受到人们的广泛关注。本文简要介绍了植物中茉莉酸甲酯信号转导作用的相关研究进展。  相似文献   

19.
Russwurm M  Koesling D 《The EMBO journal》2004,23(22):4443-4450
Nitric oxide (NO)-sensitive guanylyl-cyclase (GC) is the most important receptor for the signaling molecule NO. Activation of the enzyme is brought about by binding of NO to the prosthetic heme group. By monitoring NO-binding and catalytic activity simultaneously, we show that NO activates GC only if the reaction products of the enzyme are present. NO-binding in the absence of the products did not activate the enzyme, but yielded a nonactivated species with the spectral characteristics of the active form. Conversion of the nonactivated into the activated conformation of the enzyme required the simultaneous presence of NO and the reaction products. Furthermore, the products magnesium/cGMP/pyrophosphate promoted the release of the histidine-iron bond during NO-binding, indicating reciprocal communication of the catalytic and ligand-binding domains. Based on these observations, we present a model that proposes two NO-bound states of the enzyme: an active state formed in the presence of the products and a nonactivated state. The model not only covers the data reported here but also consolidates results from previous studies on NO-binding and dissociation/deactivation of GC.  相似文献   

20.
Nitric oxide (NO) is a gaseous signaling molecule with a broad spectrum of regulatory functions in plant growth and development. NO has been found to be involved in various pathogenic or symbiotic plant-microbe interactions. During the last decade, increasing evidence of the occurrence of NO during legume-rhizobium symbioses has been reported, from early steps of plant-bacteria interaction, to the nitrogen-fixing step in mature nodules. This review focuses on recent advances on NO production and function in nitrogen-fixing symbiosis. First, the potential plant and bacterial sources of NO, including NO synthase-like, nitrate reductase or electron transfer chains of both partners, are presented. Then responses of plant and bacterial cells to the presence of NO are presented in the context of the N2-fixing symbiosis. Finally, the roles of NO as either a regulatory signal of development, or a toxic compound with inhibitory effects on nitrogen fixation, or an intermediate involved in energy metabolism, during symbiosis establishment and nodule functioning are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号