首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the Rho family of small GTPases are key regulators of the actin cytoskeleton, particularly in relation to the cell shape changes and the adhesion dynamic that drive cell migration. Here, we report the effect of activation or inhibition of the function of RhoA on cell motility and morphology. Both in the presence and the absence of serum, expression of constitutively active RhoA dramatically inhibited L929 fibroblasts' cell motility, and induced a rounding of the cells and a decrease in the number of processes per cell. In contrast, expression of a dominant negative mutant of RhoA had no effect on cell motility or morphology in steady-state conditions with or without serum in the medium. Inhibition of p160ROCK, a kinase effector of RhoA, only partially inhibited cell migration. Conversely, when cells were submitted to a period of serum deprivation followed by addition of serum, inhibition of endogenous RhoA by expression of the dominant negative mutant of RhoA impeded cell motility after serum stimulation. Thus, RhoA activity is required for stimulation of cell locomotion by serum factors. It was also observed that the addition of serum factors to quiescent L929 and NR6wtEGFR fibroblasts resulted in a delayed motility response of several hours compared to the immediately induced morphological changes, indicating the absence of a previously assumed direct correlation between changes in cell motility and cell morphology in response to serum addition. The motility response of L929 and NR6wtEGFR fibroblasts to serum stimulation required protein synthesis.  相似文献   

2.
Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility   总被引:16,自引:0,他引:16  
Adducin is a membrane skeletal protein that binds to actin filaments (F-actin) and thereby promotes the association of spectrin with F-actin to form a spectrin-actin meshwork beneath plasma membranes such as ruffling membranes. Rho-associated kinase (Rho- kinase), which is activated by the small guanosine triphosphatase Rho, phosphorylates alpha-adducin and thereby enhances the F-actin-binding activity of alpha-adducin in vitro. Here we identified the sites of phosphorylation of alpha-adducin by Rho-kinase as Thr445 and Thr480. We prepared antibody that specifically recognized alpha-adducin phosphorylated at Thr445, and found by use of this antibody that Rho-kinase phosphorylated alpha-adducin at Thr445 in COS7 cells in a Rho-dependent manner. Phosphorylated alpha-adducin accumulated in the membrane ruffling area of Madin-Darby canine kidney (MDCK) epithelial cells and the leading edge of scattering cells during the action of tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF). The microinjection of Botulinum C3 ADP-ribosyl-transferase, dominant negative Rho-kinase, or alpha-adducinT445A,T480A (substitution of Thr445 and Thr480 by Ala) inhibited the TPA-induced membrane ruffling in MDCK cells and wound-induced migration in NRK49F cells. alpha-AdducinT445D,T480D (substitution of Thr445 and Thr480 by Asp), but not alpha-adducinT445A,T480A, counteracted the inhibitory effect of the dominant negative Rho-kinase on the TPA-induced membrane ruffling in MDCK cells. Taken together, these results indicate that Rho-kinase phosphorylates alpha-adducin downstream of Rho in vivo, and that the phosphorylation of adducin by Rho-kinase plays a crucial role in the regulation of membrane ruffling and cell motility.  相似文献   

3.
Calcium regulation of mitochondria motility and morphology   总被引:1,自引:0,他引:1  
Danny V. Jeyaraju 《BBA》2009,1787(11):1363-1373
In the Fifties, electron microscopy studies on neuronal cells showed that mitochondria typically cluster at synaptic terminals, thereby introducing the concept that proper mitochondria trafficking and partitioning inside the cell could provide functional support to the execution of key physiological processes. Today, the notion that a central event in the life of every eukaryotic cell is to configure, maintain, and reorganize the mitochondrial network at sites of high energy demand in response to environmental and cellular cues is well established, and the challenge ahead is to define the underlying molecular mechanisms and regulatory pathways. Recent pioneering studies have further contributed to place mitochondria at the center of the cell biology by showing that the machinery governing remodeling of mitochondria shape and structure regulates the functional output of the organelle as the powerhouse of the cell, the gateway to programmed cell death, and the platform for Ca2+ signaling. Thus, a raising issue is to identify the cues integrating mitochondria trafficking and dynamics into cell physiology and metabolism. Given the versatile function of calcium as a second messenger and of the role of mitochondria as a major calcium store, evidences are emerging linking Ca2+ transients to the modulation of mitochondrial activities. This review focuses on calcium as a switch controlling mitochondria motility and morphology in steady state, stressed, and pathological conditions.  相似文献   

4.
The maintenance of genomic stability relies on the spindle assembly checkpoint (SAC), which ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented and attached to the mitotic spindle. BUB1 and BUBR1 kinases are central for this process and by interacting with Blinkin, link the SAC with the kinetochore, the macromolecular assembly that connects microtubules with centromeric DNA. Here, we identify the Blinkin motif critical for interaction with BUBR1, define the stoichiometry and affinity of the interaction, and present a 2.2 ? resolution crystal structure of the complex. The structure defines an unanticipated BUBR1 region responsible for the interaction and reveals a novel Blinkin motif that undergoes a disorder-to-order transition upon ligand binding. We also show that substitution of several BUBR1 residues engaged in binding Blinkin leads to defects in the SAC, thus providing the first molecular details of the recognition mechanism underlying kinetochore-SAC signaling.  相似文献   

5.
The evolutionarily conserved kelch-repeat protein muskelin was identified as an intracellular mediator of cell spreading. We discovered that its morphological activity is controlled by association with RanBP9/RanBPM, a protein involved in transmembrane signaling and a conserved intracellular protein complex. By subcellular fractionation, endogenous muskelin is present in both the nucleus and the cytosol. Muskelin subcellular localization is coregulated by its C terminus, which provides a cytoplasmic restraint and also controls the interaction of muskelin with RanBP9, and its atypical lissencephaly-1 homology motif, which has a nuclear localization activity which is regulated by the status of the C terminus. Transient or stable short interfering RNA–based knockdown of muskelin resulted in protrusive cell morphologies with enlarged cell perimeters. Morphology was specifically restored by complementary DNAs encoding forms of muskelin with full activity of the C terminus for cytoplasmic localization and RanBP9 binding. Knockdown of RanBP9 resulted in equivalent morphological alterations. These novel findings identify a role for muskelin–RanBP9 complex in pathways that integrate cell morphology regulation and nucleocytoplasmic communication.  相似文献   

6.
7.
8.
Previously we identified TES as a candidate tumour suppressor gene that is located at human chromosome 7q31.1. More recently, we and others have shown TES to encode a novel LIM domain protein that localises to focal adhesions. Here, we present the cloning and functional analysis of the chicken orthologue of TES, cTES. The TES proteins are highly conserved between chicken and human, showing 89% identity at the amino acid level. We show that the cTES protein localised at focal adhesions, actin stress fibres, and sites of cell-cell contact, and GST-cTES can pull-down zyxin and actin. To investigate a functional role for cTES, we looked at the effect of its overexpression on cell spreading and cell motility. Cells overexpressing cTES showed increased cell spreading on fibronectin, and decreased cell motility, compared to RCAS vector transfected control cells. The data from our studies with cTES support our previous findings with human TES and further implicate TES as a member of a complex of proteins that function together to regulate cell adhesion and additionally demonstrate a role for TES in cell motility.  相似文献   

9.
To study cell motility in different phases of the cell cycle, time-lapse recording by computer-assisted microscopy of unsynchronised cells from three mammalian cell lines (L929, BT4Cn, HeLa) was used for the determination of the displacements of individual cells. The displacements were used for calculation of three key parameters describing cell motility: speed, persistence time and rate of diffusion. All investigated cell lines demonstrated a lower cell displacement in the G2 phase than in the G1/S phases. This was caused by a decrease in speed and/or persistence time. The decrease in motility was accompanied by changes in morphology reflecting the larger volume of cells in G2 than in G1. Furthermore, L-cells and HeLa-cells appeared to be less adherent in the G2 phase. Transfection of L-cells with constitutively active Rac1 led to a general increase in the speed and rate of diffusion in G2 to levels comparable to those of control cells in G1. In contrast, transfection with dominant-negative Rac1 reduced cell speed and resulted in cellular displacements, which were identical in G1 and G2. These observations indicate that migration of cultured cells is regulated in a cell-cycle-dependent manner, and that an enhancement of Rac1 activity is sufficient for a delay of the reduced cell displacement otherwise seen in G2.  相似文献   

10.
Li C  Chan YR 《Cytokine》2011,56(2):435-441
Lipocalin 2 is a protein that has garnered a great deal of interest in multidisciplinary fields over the last two decades since its discovery. However, its exact function in metabolic processes remains to be completely characterized. More recently, it has come to light as a highly upregulated protein in the setting of injury and infection. This review focuses on lipocalin 2 regulation and its relationship to cytokine and endocrine signaling pathways.  相似文献   

11.
Calmodulin (CaM) is a major cytoplasmic calcium receptor that performs multiple functions including cell motility. To investigate the mechanism of the regulation of CaM on cell morphology and motility, first we checked the distribution of CaM in the living cells using GFP-CaM as an indicator. We found that GFP-CaM showed a fiber-like distribution pattern in the cytosol of living Potorous tridactylis kidney (PtK2) cells but not in living HeLa cells. The endogenous CaM in heavily permeabilized HeLa was also found to display a fiber-like distribution pattern. Further examination showed that the distribution pattern of GFP-CaM was same as that of stress fibers, but not microtubules. Co-immunoprecipitation also showed that CaM can interact with actin directly or indirectly. The microinjection of trp peptide, a specific inhibitor of CaM, attenuated the polymerization of stress fibers and induced the alteration of cell morphology. A wound-healing assay and a single cell tracking experiment showed that CaM in PtK2 cells could increase cell motility. The data we have got from living cells suggested that CaM affect cell morphology and motility through binding to stress fibers and regulate f-actin polymerization.  相似文献   

12.
13.
We have examined the effect of covalently crosslinked profilin–actin (PxA), which closely matches the biochemical properties of ordinary profilin–actin and interferes with actin polymerization in vitro and in vivo, on Listeria monocytogenes motility. PxA caused a marked reduction in bacterial motility, which was accompanied by the detachment of bacterial tails. The effect of PxA was dependent on its binding to proline-rich sequences, as shown by the inability of PH133SxA, which cannot interact with such sequences, to impair Listeria motility. PxA did not alter the motility of a Listeria mutant that is unable to recruit Ena (Enabled)/VASP (vasodilator-stimulated phosphoprotein) proteins and profilin to its surface. Finally, PxA did not block the initiation of actin-tail formation, indicating that profilin–actin is only required for the elongation of actin filaments at the bacterial surface. Our findings provide further evidence that profilin–actin is important for actin-based processes, and show that it has a key function in Listeria motility.  相似文献   

14.
Osteopontin (Opn) is important for T helper type 1 (T(H)1) immunity and autoimmunity. However, the role of this cytokine in T(H)2-mediated allergic disease as well as its effects on primary versus secondary antigenic encounters remain unclear. Here we demonstrate that OPN is expressed in the lungs of asthmatic individuals and that Opn-s, the secreted form of Opn, exerts opposing effects on mouse T(H)2 effector responses and subsequent allergic airway disease: pro-inflammatory at primary systemic sensitization, and anti-inflammatory during secondary pulmonary antigenic challenge. These effects of Opn-s are mainly mediated by the regulation of T(H)2-suppressing plasmacytoid dendritic cells (DCs) during primary sensitization and T(H)2-promoting conventional DCs during secondary antigenic challenge. Therapeutic administration of recombinant Opn during pulmonary secondary antigenic challenge decreased established T(H)2 responses and protected mice from allergic disease. These effects on T(H)2 allergic responses suggest that Opn-s is an important therapeutic target and provide new insight into its role in immunity.  相似文献   

15.
During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion.  相似文献   

16.
Cochlear outer hair cells undergo reversible changes in shape when externally stimulated. This response, known as OHC motility, is a central component of the cochlear amplifier, the mechanism responsible for the high sensitivity of mammalian hearing. We report that actin depolymerization, as regulated by activation/inhibition of LIMK/cofilin-mediated pathways, has a pivotal role in OHC motility. LIMK-mediated cofilin phosphorylation, which inhibits the actin depolymerizing activity of this protein, increases both electromotile amplitude and total length of guinea pig OHCs. In contrast, a decrease in cofilin phosphorylation reduces both OHC electromotile amplitude and OHC length. Experiments with acetylcholine and lysophosphatidic acid indicate that the effects of these agents on OHC motility are associated with regulation of cofilin phosphorylation via different signaling cascades. On the other hand, nonlinear capacitance measurements confirmed that all observed changes in OHC motile response were independent of the performance of the motor protein prestin. Altogether, these results strongly support the hypothesis that the cytoskeleton has a major role in the regulation of OHC motility, and identify actin depolymerization as a key process for modulating cochlear amplification.  相似文献   

17.
Eph receptor tyrosine kinases (Ephs) and their membrane anchored ephrin ligands (ephrins) form an essential cell-cell communication system that directs the positioning, adhesion and migration of cells and cell layers during development. While less prominent in normal adult tissues, there is evidence that up-regulated expression and de-regulated function of Ephs and ephrins in a large variety of human cancers may promote a more aggressive and metastatic tumour phenotype. However, in contrast to other RTKs, Ephs do not act as classical proto-oncogenes and do not effect cell proliferation or differentiation. Mounting evidence suggests that Eph receptors, through de-regulated re-emergence of their mode of action in the embryo may direct cell movements and positioning during metastasis, invasion and tumour angiogenesis. This review discusses these and other emerging roles of Eph receptors during oncogenesis.  相似文献   

18.
19.
Cortactin is frequently overexpressed in cancer cells, and changes of the levels of its tyrosine phosphorylation have been observed in several cancer cells. However, how the expression level and phosphorylation state of cortactin would influence the ultimate cellular function of cancer cells is unknown. In this study, we analyzed the role of cortactin in gastric and breast cancer cell lines using RNA interference technique and found that knockdown of cortactin inhibited cell migration in a subset of gastric cancer cells with a lower level of its tyrosine phosphorylation, whereas it greatly enhanced cell migration and increased tyrosine phosphorylation of p130Cas in other subsets of cells with hyperphosphorylated cortactin. Consistent results were obtained when hyperphosphorylation of cortactin was induced in MCF7 breast cancer cells by expressing Fyn tyrosine kinase. Additionally, immunostaining analysis showed that knockdown of hyperphosphorylated cortactin resulted in the recruitment of p130Cas to focal adhesions. These results suggest that cortactin hyperphosphorylation suppresses cell migration possibly through the inhibition of membrane localization and tyrosine phosphorylation of p130Cas.  相似文献   

20.
Nitric oxide (NO) production by endothelial cell nitric oxide synthase (eNOS) in sinusoidal endothelial cells is reduced in the injured liver and leads to intrahepatic portal hypertension. We sought to understand the mechanism underlying defective eNOS function. Phosphorylation of the serine-threonine kinase Akt, which activates eNOS, was substantially reduced in sinusoidal endothelial cells from injured livers. Overexpression of Akt in vivo restored phosphorylation of Akt and production of NO and reduced portal pressure in portal hypertensive rats. We found that Akt physically interacts with G-protein-coupled receptor kinase-2 (GRK2), and that this interaction inhibits Akt activity. Furthermore, GRK2 expression increased in sinusoidal endothelial cells from portal hypertensive rats and knockdown of GRK2 restored Akt phosphorylation and NO production, and normalized portal pressure. Finally, after liver injury, GRK2-deficient mice developed less severe portal hypertension than control mice. Thus, an important mechanism underlying impaired activity of eNOS in injured sinusoidal endothelial cells is defective phosphorylation of Akt caused by overexpression of GRK2 after injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号