首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host-parasite interactions that result in host castration are evolutionarily similar to predator-prey interactions because both interactions terminate reproduction for the host or prey. Yet, host-parasite interactions differ from predator-prey interactions in that infected hosts remain alive and potentially can make adjustments to their life-history strategy before castration is complete. Here we exposed juvenile snails (Potamopyrgus antipodarum) to infection by a digenetic trematode (Microphallus sp.) in order to determine whether: (1) pre-reproductive individuals could be infected, (2) individuals that were exposed to infection shifted resources to early reproduction (fecundity compensation), and (3) infected individuals exhibit altered growth rates relative to uninfected individuals. We found that juveniles are susceptible to infection; hence P. antipodarum could be selected for earlier maturation in populations where the risk of infection is high. We also found that fecundity compensation does not occur in this snail. Finally, we found that Microphallus-infected snails exhibit altered growth rates; individuals infected as juveniles have lower growth rates and are smaller than uninfected snails. These results suggest that growth is altered by infection of a trematode parasite but reproduction in uninfected snails is not induced by exposure to trematode eggs. Received: 11 January 1998 / Accepted: 19 May 1998  相似文献   

2.
The level of host exploitation is expected, under theory, to be selected to maximise (subject to constraints) the lifetime reproductive success of the parasite. Here we studied the effect of two castrating trematode species on their intermediate snail host, Potamopyrgus antipodarum. One of the trematode species, Microphallus sp., encysts in the snail host and the encysted larvae “hatch” following ingestion of infected snails by birds. The other species, Notocotylus gippyensis, by contrast, releases swimming larvae; ingestion of the snail host is not required for, and does not aid, transmission to the final host. We isolated field-collected snails for 3 months in the laboratory, and followed the survival of infected and uninfected snails under two conditions: not fed and fed ad libitum. Mortality of the infected hosts was higher than mortality of the uninfected ones, but the response to starvation treatment was parasite species specific. N. gippyensis induced significantly higher mortality in starved snails than did Microphallus. Based on these results, we suggest that host exploitation by different species of trematodes may depend on the type of transmission. Encysting in the snail host may select for a reduced rate of host exploitation so as to increase the probability of transmission to the final host. Received: 29 July 1998 / Accepted: 1 February 1999  相似文献   

3.
Reciprocal adaptation between interacting species may occur in some regions (coevolutionary ‘hotspots’) and not others (‘coldspots’). In a previous study, we found hotspots and coldspots along a continuous depth gradient in two different New Zealand lakes. Specifically, we found that Microphallus sp. trematodes were locally adapted to Potamopyrgus antipodarum snails collected from shallow‐water margins of the lakes, but not to snails collected from deep‐water habitats. As sexual snails were more common in the shallow water, and asexual snails more common in the deep water, the results were also consistent with the Red Queen hypothesis, which predicts that sex should be favored in environments with coevolving parasites. Here, we repeated our earlier experiment to determine whether the results are robust over time (two years) and space (three lakes). We also tested whether our measure of parasite local adaptation was sensitive to parasite dose. Our results suggest that shallow‐water habitats are temporally stable coevolutionary hotspots, and that the pattern is spatially robust over three lake populations. We also found that, while parasite dose affects the magnitude of local adaptation, it does not obscure the signature of local adaptation in this snail–trematode system.  相似文献   

4.
Biomphalaria glabrata infected with Schistosoma mansoni for 33 days fed more often than uninfected snails. Whereas uninfected snails had nocturnal increases in feeding, snails with a 33-day-old infection of S. mansoni fed as often during the day as in the night. Using direct observation and film analysis, we found that feeding increased the heartbeat rate and locomotor activity of B. glabrata. When snails were allowed to feed ad lib., infected snails had higher heartbeat rates than uninfected snails both during the day (P less than 0.01) and the night (P less than 0.001). However, when the snails were deprived of food for 24 hr, infected snails had slightly higher heartbeat rates than uninfected snails only during the day (P less than 0.05). There was no difference between the heartbeat rates of feeding, infected snails and the heartbeat rates of uninfected snails that were starved for 8 hr, and then allowed to feed. Uninfected snails had nocturnal increases in heartbeat rate regardless of feeding schedule, but infected snails had greater nighttime heartbeat rate than daytime heartbeat rate only when they were not allowed to feed. Infected snails had less nocturnal locomotor activity than uninfected snails when feeding, but there was no difference between the locomotor activity of infected and uninfected snails when the snails were deprived of food for 24 hr. Absence of food also resulted in an increased nighttime to daytime ratio of locomotor activity of infected snails. These results suggest that the increased heartbeat rate and altered rhythms of heartbeat rate and locomotor activity in B. glabrata infected with S. mansoni for 33 days were caused by the altered feeding response of these snails.  相似文献   

5.
Understanding host-parasite coevolution requires multigenerational studies in which changes in both parasite infectivity and host susceptibility are monitored. We conducted a coevolution experiment that examined six generations of interaction between a freshwater snail (Potamopyrgus antipodarum) and one of its common parasites (the sterilizing trematode, Microphallus sp.). In one treatment (recycled), the parasite was reintroduced into the same population of host snails. In the second treatment (lagged), the host snails received parasites from the recycled treatment, but the addition of these parasites did not begin until the second generation. Hence any parasite-mediated genetic changes of the host in the lagged treatment were expected to be one generation behind those in the recycled treatment. The lagged treatment thus allowed us to test for time lags in parasite adaptation, as predicted by the Red Queen model of host-parasite coevolution. Finally, in the third treatment (control), parasites were not added. The results showed that parasites from the recycled treatment were significantly more infective to snails from the lagged treatment than from the recycled treatment. In addition, the hosts from the recycled treatment diverged from the control hosts with regard to their susceptibility to parasites collected from the field. Taken together, the results are consistent with time lagged, frequency-dependent selection and rapid coevolution between hosts and parasites.  相似文献   

6.
We studied the role of host ploidy and parasite exposure on immune defence allocation in a snail-trematode system (Potamopyrgus antipodarum-Microphallus sp.). In the field, haemocyte (the defence cell) concentration was lowest in deep-water habitats where infection is relatively low and highest in shallow-water habitats where infection is common. Because the frequency of asexual triploid snails is positively correlated with depth, we also experimentally studied the role of ploidy by exposing both diploid sexual and triploid asexual snails to Microphallus eggs. We found that triploid snails had lower haemocyte concentrations than did diploids in both parasite-addition and parasite-free treatments. We also found that both triploids and diploids increased their numbers of large granular haemocytes at similar rates after parasite exposure. Because triploid P. antipodarum have been shown to be more resistant to allopatric parasites than diploids, the current results suggest that the increased resistance of triploids is because of intrinsic genetic properties rather than to greater allocation to defence cells. This finding is consistent with recent theory on the advantages of increased ploidy for hosts combating coevolving parasites.  相似文献   

7.
Changes in the metabolism and activity of the freshwater snail Semisulcospira libertina infected with larval trematodes were studied experimentally. In snails up to 11 mm in shell width, crawling distance, feeding frequency, and the proportion of individuals located on vertical walls did not differ among snails infected with mature or immature cercariae, or uninfected snails (p > 0.05). In snails larger than 11 mm, individuals infected with mature cercariae tended to feed more frequently during the light period (p = 0.0081), but the distance they crawled and the proportion of individuals located on vertical walls did not differ, regardless of infection (p > 0.05). Infection with mature cercariae significantly increased the oxygen consumption rate (p = 0.016), which was measured only in the large size.  相似文献   

8.
Outside its native range, the invasive New Zealand mud snail (NZMS), Potamopyrgus antipodarum, is rarely reported to harbor parasites. To test this observation, 7 sites along the Snake River and Polecat Creek in the Grand Teton National Park/John D Rockefeller Memorial Parkway area (Wyoming) were surveyed for native aquatic snails, NZMS, and associated digenean trematodes, in July 2005. At 6 sites, native snails harbored patent digenean infections; within 2 hr, < or =10% of lymnaeid snails shed furcocercariae or xiphidiocercariae, and < or =42% of physid snails released furcocercariae or echinostome cercariae. Partial 18S rDNA sequences were recovered from several furcocercariae. Potamopyrgus antipodarum was present at, and collected from, 5 sites. Polymerase chain reaction assays targeting digenean rDNA sequences in DNA extracted from pools of 150 NZMS snails did not detect parasites. The examination of 960 NZMS by overnight shedding yielded 1 occurrence of (surface-encysted) metacercariae of an unclassified notocotylid (based on 18S and 28S rDNA sequences). The dissection of 150 ethanol-fixed NZMS (30/site) revealed 2 types of digenean metacercariae encysted in tissues of 5 snails from Polecat Creek. Thus, invasive NZMS may serve as first and second intermediate host for digenean parasites.  相似文献   

9.
Both theoretical arguments and empirical evidence suggest that parasite transmission depends on host density. In helminths with complex life cycles, however, it is not clear which host, if any, is the most important. Here, the relationships between the abundance of metacercariae in second intermediate hosts, and the local density of both the first and second intermediate hosts of two trematode species, are investigated. Samples of the snail Potamopyrgus antipodarum, the amphipod Paracalliope fluviatilis and the isopod Austridotea annectens were collected from ten stations in a New Zealand lake. In the trematode Coitocaecum parvum, neither the density of the snail first intermediate host nor that of the amphipod second intermediate host correlated with infection levels in amphipods. In contrast, in the trematode Microphallus, infection levels in isopod second intermediate hosts were positively associated with isopod density and negatively associated with the density of snail first intermediate hosts. These relationships are explained by a negative correlation between snail and isopod densities, mediated in part by their different use of macrophyte beds in the lake. Overall, the results suggest that, at least for Microphallus, local infection levels depend on local intermediate host densities.  相似文献   

10.
In each of two reciprocal cross-infection experiments, a digenetic trematode (Microphallus sp.) was found to be significantly more infective to snails (Potamopyrgus antipodarum) from its local host populations. This gives strong evidence for local adaptation by the parasite and indicates that there is a genetic basis to the host–parasite interaction. It is suggested that the parasite should be able to track common snail genotypes within populations and, therefore, that it could be at least partially responsible for the persistence of sexual subpopulations of the snail in those populations that have both obligately sexual and obligately parthenogenetic females.  相似文献   

11.
Levels of lysozyme activity were determined in the hemolymph, digestive gland, and headfoot extracts of M-line stock of snails, Biomphalaria glabrata, during infection with the PR-1 and Lc-1 strains of the trematode, Schistosoma mansoni. At 3 hr postexposure there was a 10-fold increase in the levels of enzyme activity in the hemolymph of snails infected with the Lc-1 strain to which the snail is resistant. This increase was considerably higher when compared to the threefold increase in the PR-1-infected snails. The infection also induced a gradual depletion of lysozyme activity in the headfoot muscles of the two groups of infected snails. There were no changes in the levels of enzyme activity in the digestive gland extracts of the control and the two groups of infected snails. Similar changes in the levels of enzyme activity in the hemolymph and headfoot extracts of infected snails suggest a nonspecific response to a parasite infection and do not indicate that lysozyme is primarily responsible for the destruction of schistosome parasite in a resistant snail host.  相似文献   

12.
Host behavioral changes due to parasitism are often assumedto be adaptations of the parasite. However, behavioral effectsof parasites may be a generalized response to parasitism andonly coincidentally beneficial for parasite transmission. Forthis reason, alternatives to the manipulation hypothesis shouldbe tested. Previous work demonstrated that the trematode parasiteMicrophallus sp. influences the behavior of the snail Potamopyrgusantipodarum in a way that may increase the probability of transmission.Here I report work conducted to test alternatives to the manipulationhypothesis. In a field study, the effect of Microphallus onbehavior was compared to that of two other castrating parasitegroups to determine if the behavioral change is simply a byproductof parasitism. Also, the foraging behaviors of infected anduninfected snails were examined in the presence and absenceof food resources to determine if the hunger level of Microphallus-infectedsnails could account for the parasite-induced behavioral change.First, Microphallus-infected snails were found on top of rocksduring the day less often than the two other parasite groups. Thisevidence suggests that the behavioral change caused by Microphallusis specific to Microphallus-infected snails. Second, Microphallus-infectedsnails responded to the lack of food differently from uninfectedsnails. Uninfected snails retreated to safer positions underrocks when the food source was removed from the top of the rocks,while Microphallus-infected snails remained on top of the rockswhere the risk of consumption by the final host is greater.Taken together with previous studies, these results suggestthat infection by Microphallus results in behavior that enhancesparasite transmission.  相似文献   

13.
Shell damage and parasitic infections are frequent in gastropods, influencing key snail host life‐history traits such as survival, growth, and reproduction. However, their interactions and potential effects on hosts and parasites have never been tested. Host–parasite interactions are particularly interesting in the context of the recently discovered division of labor in trematodes infecting marine snails. Some species have colonies consisting of two different castes present at varying ratios; reproductive members and nonreproductive soldiers specialized in defending the colony. We assessed snail host survival, growth, and shell regeneration in interaction with infections by two trematode species, Philophthalmus sp. and Maritrema novaezealandense, following damage to the shell in the New Zealand mud snail Zeacumantus subcarinatus. We concomitantly assessed caste‐ratio adjustment between nonreproductive soldiers and reproductive members in colonies of the trematode Philophthalmus sp. in response to interspecific competition and shell damage to its snail host. Shell damage, but not parasitic infection, significantly increased snail mortality, likely due to secondary infections by pathogens. However, trematode infection and shell damage did not negatively affect shell regeneration or growth in Z. subcarinatus; infected snails actually produced more new shell than their uninfected counterparts. Both interspecific competition and shell damage to the snail host induced caste‐ratio adjustment in Philophthalmus sp. colonies. The proportion of nonreproductive soldiers increased in response to interspecific competition and host shell damage, likely to defend the parasite colony and potentially the snail host against increasing threats. These results indicate that secondary infections by pathogens following shell damage to snails both significantly increased snail mortality and induced caste‐ratio adjustments in parasites. This is the first evidence that parasites with a division of labor may be able to produce nonreproductive soldiers according to environmental factors other than interspecific competition with other parasites.  相似文献   

14.
Summary The Warburg's manometric technique was used to measure the rate of oxygen consumption of the second generation of laboratory-reared snails, Biomphalaria alexandrina and Bulinus truncatus at two temperatures of 25° and 30°C. The individual weight of the experimental snails ranged between 40 and 78 mg for B. alexandrina, between 60 and 90 mg for B. truncatus.At 25°C, the uninfected snails B. alexandrina consumed oxygen at an average rate of 0.096 ± 0.020 ml/g wet wt/hr. The rate of oxygen consumption increased to an average of 0.147 ± 0.008 ml/g wet wt/hr for uninfected snails maintained at 30°C (about 53 per cent increase). The average RW value for uninfected snails maintained at 25°C was 0.80.The snail Bulinus truncatus showed higher oxygen requirements than the snail Biomphalaria alexandrina. At 25°C, it consumed oxygen at an average rate of 0.124 ± 0.016 ml/g wet wt/hr. At 30°C, the rate of oxygen consumption reached a value of 0.220 + 0.006 ml/g wet wt/hr. The average RQ for Bulinus truncatus maintained at 25°C was 0.87.The rate of oxygen consumption of the schistosome — infected Biomphalaria alexandrina snails, maintained at 25°C decreased to an average rate of 0.059 ± 0.010 ml/g wet wt/hr, (an average of 39 per cent decrease). The respiratory quotient (RQ) also decreased to an average value of 0.58. Further research is suggested to clarify the metabolism of both schistosome-infected and uninfected snails.Read at the Ist African Symposium on Bilharziasis, Cairo Egypt, U.A.R., February, 1969.From the Laboratory of Bilharziasis Research, National Research Centre, Dokki, Egypt, U.A.R.  相似文献   

15.
Models and empirical studies of coevolution assume host resistance and parasite infectivity are genetically based. However, nongenetic physiological or environmental influences could alter host susceptibility even when the relationship is genetically based. In this experiment we examined the influence of host genotype, host condition at the time of infection (age and reproductive status), and their interaction on resistance of the freshwater snail Potamopyrgus antipodarum) to its dominant trematode parasite (Microphallus sp.). We used a laboratory infection experiment of a clonal snail population to determine the susceptibility of juveniles, brooding adult females, and nonbrooding adult females. We found a significant effect of both life-history state and clonal genotype on the prevalence of infection. However, the relative susceptibility of different clonal genotypes was not altered by condition; genotypes that were rare in the natural population were less infected than those that were common for each life-history state. These results suggest that although host condition affects susceptibility, it does not disrupt the specificity of the match between parasites and common clonal genotypes. Hence these findings support the Red Queen hypothesis for the maintenance of sex under genetically based host-parasite interactions.  相似文献   

16.
Host–parasite coevolution is often suggested as a mechanism for maintaining genetic diversity, but finding direct evidence has proven difficult. In the present study, we examine the process of coevolution using a freshwater New Zealand snail ( Potamopyrgus antipodarum ) and its common parasite (the sterilizing trematode, Microphallus sp.) Specifically, we test for changes in genotypic composition of clonal host populations in experimental populations evolving either with or without parasites for six generations. As predicted under the Red Queen model of coevolution, the initially most common host genotype decreased in frequency in the presence, but not the absence, of parasitism. Furthermore, the initially most common host genotype became more susceptible to infection by the coevolving parasite populations over the course of the experiment. These results are consistent with parasite-meditated selection leading to a rare advantage, and they indicate rapid coevolution at the genotypic level between a host and its parasite.  相似文献   

17.
The effects of snail size and diet on encystment of Echinostoma caproni cercariae in juvenile Helisoma trivolvis (Colorado strain) snails were studied. Encystment in neonatal (<1-mm shell diameter) and juvenile (2- to 3-mm shell diameter) snails was compared 24 hr postinfection (PI) after individual exposure of snails of each size to 1, 5, 10, 25, or 50 cercariae. Significantly more cysts were recovered from juvenile snails exposed to 10, 25, or 50 cercariae than from neonatals with comparable exposure. The maximum number of cysts recovered from juveniles exposed to 50 cercariae was 42, compared with a maximum of 15 cysts in neonatals comparably exposed. Size of H. trivolvis was a major factor in determining cyst burden in this planorbid. A diet of either Romaine lettuce leaf or hen's egg yolk did not have a significant effect on the number of cysts recovered at 24 hr PI from juvenile snails exposed to 25 or 75 cercariae. Survival of infected versus uninfected neonatals was also examined for 7 days. Neonatals exposed to 10 cercariae showed a significant decrease in survival at 6 and 7 days PI when compared with uninfected controls.  相似文献   

18.
To estimate isotopic changes caused by trematode parasites within a host, we investigated changes in the carbon and nitrogen isotope ratios of the freshwater snail Lymnaea stagnalis infected by trematode larvae. We measured carbon and nitrogen stable isotopes within the foot, gonad, and hepatopancreas of both infected and uninfected snails. There was no significant difference in the delta13C and delta15N values of foot and gonad between infected and uninfected snails; thus, trematode parasite infections may not cause changes in snail diets. However, in the hepatopancreas, delta15N values were significantly higher in infected than in uninfected snails. The 15N enrichment in the hepatopancreas of infected snails is caused by the higher 15N ratio in parasite tissues. Using an isotope-mixing model, we roughly estimated that the parasites in the hepatopancreas represented from 0.8 to 3.4% of the total snail biomass, including the shell.  相似文献   

19.
The avian schistosomes, Trichobilharzia stagnicolae, T. physellae and Gigantobilharzia sp., that cause Schistosome Dermatitis (Swimmers' Itch) in humans were studied in the laboratory and at Cultus Lake, British Columbia, Canada in relation to the biology and behavior of their intermediate snail hosts, Stagnicola catascopium, Physa sp. and Gyraulus parvus, respectively, and their definite bird hosts. Wind-driven, surface currents were measured. Populations of snails, close to host-bird roosting logs had a very high prevalence of schistosome infections. An experiment that mechanically disturbed the epilithic habitat of the snails using a boat-mounted rototiller or a tractor and rake, eliminated almost all of the snails if the disturbance was done in areas of high snail concentration in shallow areas of the lake during the breeding and early development phase of the snail. It is proposed that the incorporation of snail habitat disturbance into management programs is an effective way to control Schistosome Dermatitis.  相似文献   

20.
Egg production in the snail, Biomphalaria glabrata, infected with Schistosoma mansoni declined on day 23 postinfection, and was significantly lower than uninfected control snails by day 28 and thereafter. Protein and galactogen content of eggs produced by infected snails did not change during the period of reduced fecundity. This suggests that decreased hemolymph nutrient levels (rather than depleted albumen gland reserves) are responsible for inhibition of snail egg production. Growth rates of infected and uninfected snails were indistinguishable from days 14 through 35 postinfection. The hatching success of eggs produced by infected snails decreased slightly beginning at day 21 postinfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号