首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B cell linker protein (BLNK) is a SLP-76-related adaptor protein essential for signal transduction from the BCR. To identify components of BLNK-associated signaling pathways, we performed a phosphorylation-dependent yeast two-hybrid analysis using BLNK probes. Here we report that the serine/threonine kinase hematopoietic progenitor kinase 1 (HPK1), which is activated upon antigen-receptor stimulation and which has been implicated in the regulation of MAP kinase pathways, interacts physically and functionally with BLNK in B cells and with SLP-76 in T cells. This interaction requires Tyr(379) of HPK1 and the Src homology 2 (SH2) domain of BLNK/SLP-76. Via homology modeling, we defined a consensus binding site within ligands for SLP family SH2 domains. We further demonstrate that the SH2 domain of SLP-76 participates in the regulation of AP-1 and NFAT activation in response to T cell receptor (TCR) stimulation and that HPK1 inhibits AP-1 activation in a manner partially dependent on its interaction with SLP-76. Our data are consistent with a model in which full activation of HPK1 requires its own phosphorylation on tyrosine and subsequent interaction with adaptors of the SLP family, providing a mechanistic basis for the integration of this kinase into antigen receptor signaling cascades.  相似文献   

2.
Hematopoietic progenitor kinase 1 (HPK1) is a Ste20-like serine/threonine kinase that suppresses immune responses and autoimmunity. B cell receptor (BCR) signaling activates HPK1 by inducing BLNK/HPK1 interaction. Whether HPK1 can reciprocally regulate BLNK during BCR signaling is unknown. Here, we show that HPK1-deficient B cells display hyper-proliferation and hyper-activation of IκB kinase and MAPKs (ERK, p38, and JNK) upon the ligation of BCR. HPK1 attenuates BCR-induced cell activation via inducing BLNK threonine 152 phosphorylation, which mediates BLNK/14-3-3 binding. Furthermore, threonine 152-phosphorylated BLNK is ubiquitinated at lysine residues 37, 38, and 42, leading to attenuation of MAPK and IκB kinase activation in B cells during BCR signaling. These results reveal a novel negative feedback regulation of BCR signaling by HPK1-mediated phosphorylation, ubiquitination, and subsequent degradation of the activated BLNK.  相似文献   

3.
MIST (also termed Clnk) is an adaptor protein structurally related to SLP-76 and BLNK/BASH/SLP-65 hematopoietic cell-specific adaptor proteins. By using the BLNK-deficient DT40 chicken B cell system, we demonstrated MIST functions through distinct intramolecular domains in immunoreceptor signaling depending on the availability of linker for activation of T cells (LAT). MIST can partially restore the B cell antigen receptor (BCR) signaling in the BLNK-deficient cells, which requires phosphorylation of the two N-terminal tyrosine residues. Co-expression of LAT with MIST fully restored the BCR signaling and dispenses with the requirement of the two tyrosines in MIST for BCR signaling. However, some other tyrosine(s), as well as the Src homology (SH) 2 domain and the two proline-rich regions in MIST, is still required for full reconstitution of the BCR signaling, in cooperation with LAT. The C-terminal proline-rich region of MIST is dispensable for the LAT-aided full restoration of MAP kinase activation, although it is responsible for the interaction with LAT and for the localization in glycolipid-enriched microdomains. On the other hand, the N-terminal proline-rich region, which is a binding site of the SH3 domain of phospholipase Cgamma, is essential for BCR signaling. These results revealed a marked plasticity of MIST function as an adaptor in the cell contexts with or without LAT.  相似文献   

4.
We have compared early signaling events at various stages of B cell differentiation using established mouse cell lines. Clustering of pre-B cell antigen receptor (BCR) or BCR induced the tyrosine phosphorylation of various proteins in all cells, although the phosphorylation pattern differed. In spite of the pre-BCR-induced tyrosine phosphorylation, we could not detect an intracellular Ca(2+) signal in pre-B cells. However, co-clustering of the pre-BCR with CD19 did induce Ca(2+) mobilization. In contrast to the immature and mature B cells, where the B cell linker protein (BLNK) went through inducible tyrosine phosphorylation upon BCR clustering, we observed a constitutive tyrosine phosphorylation of BLNK in pre-B cell lines. Both BLNK and phospholipase C (PLC)gamma were raft associated in unstimulated pre-B cells, and this could not be enhanced by pre-BCR engagement, suggesting a ligand-independent PLC gamma-mediated signaling. Further results indicate that the cell lines representing the immature stage are more sensitive to BCR-, CD19- and type II receptors binding the Fc part of IgG (Fc gamma RIIb)-mediated signals than mature B cells.  相似文献   

5.
Phospholipase Cgamma (PLCgamma) isoforms are regulated through activation of tyrosine kinase-linked receptors. The importance of growth factor-stimulated phosphorylation of specific tyrosine residues has been documented for PLCgamma1; however, despite the critical importance of PLCgamma2 in B-cell signal transduction, neither the tyrosine kinase(s) that directly phosphorylate PLCgamma2 nor the sites in PLCgamma2 that become phosphorylated after stimulation are known. By measuring the ability of human PLCgamma2 to restore calcium responses to the B-cell receptor stimulation or oxidative stress in a B-cell line (DT40) deficient in PLCgamma2, we have demonstrated that two tyrosine residues, Tyr(753) and Tyr(759), were important for the PLCgamma2 signaling function. Furthermore, the double mutation Y753F/Y759F in PLCgamma2 resulted in a loss of tyrosine phosphorylation in stimulated DT40 cells. Of the two kinases that previously have been proposed to phosphorylate PLCgamma2, Btk, and Syk, purified Btk had much greater ability to phosphorylate recombinant PLCgamma2 in vitro, whereas Syk efficiently phosphorylated adapter protein BLNK. Using purified proteins to analyze the formation of complexes, we suggest that function of Syk is to phosphorylate BLNK, providing binding sites for PLCgamma2. Further analysis of PLCgamma2 tyrosine residues phosphorylated by Btk and several kinases from the Src family has suggested multiple sites of phosphorylation and, in the context of a peptide incorporating residues Tyr(753) and Tyr(759), shown preferential phosphorylation of Tyr(753).  相似文献   

6.
Recent studies have demonstrated a requirement for the SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) and LAT (linker for activation of T cells) adaptor/linker proteins in T cell antigen receptor activation and T cell development as well as the BLNK (B cell linker) linker protein in B cell antigen receptor (BCR) signal transduction and B cell development. Whereas the SLP-76 and LAT adaptor proteins are expressed in T, natural killer, and myeloid cells and platelets, BLNK is preferentially expressed in B cells and monocytes. Although BLNK is structurally homologous to SLP-76, BLNK interacts with a variety of downstream signaling proteins that interact directly with both SLP-76 and LAT. Here, we demonstrate that neither SLP-76 nor LAT alone is sufficient to restore the signaling deficits observed in BLNK-deficient B cells. Conversely, the coexpression of SLP-76 and LAT together restored BCR-inducible calcium responses as well as activation of all three families of mitogen-activated protein kinases. Together, these data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function.  相似文献   

7.
B lymphocytes lacking the adaptor protein B cell linker (BLNK) do not proliferate in response to B cell antigen receptor (BCR) engagement. We demonstrate here that BCR-activated BLNK(-)/- B cells fail to enter the cell cycle, and this is due to their inability to induce the expression of the cell cycle regulatory proteins such as cyclin D2 and cyclin-dependent kinase 4. BCR-stimulated BLNK(-)/- B cells also do not up-regulate the cell survival protein Bcl-x(L), which may be necessary for the cells to complete the cell cycle. In addition, BLNK(-)/- B cells exhibit a high rate of spontaneous apoptosis in culture. Examination of the various BCR-activated signaling pathways in mouse BLNK(-)/- B cells reveals the intact activation of Akt and mitogen-activated protein kinases but the impaired activation of nuclear factor (NF)-kappaB that is known to regulate genes involved in cell proliferation and survival. The inability to activate NF-kappaB in BCR-stimulated BLNK(-)/- B cells is due to a failure to induce the degradation of the inhibitory kappaB protein. In all these aspects, BLNK(-)/- B cells resemble xid B cells that have a mutation in Bruton's tyrosine kinase (Btk). Recently, phospholipase C (PLC)-gamma2 has also been demonstrated to be essential for NF-kappaB activation. Since BLNK has been shown separately to interact with both Btk and PLC-gamma2, our finding of normal Btk but impaired PLC-gamma2 activation in BCR-stimulated BLNK(-)/- B cells strongly suggests that BLNK orchestrates the formation of a Btk-PLC-gamma2 signaling axis that regulates NF-kappaB activation. Taken together, the NF-kappaB activation defect may be sufficient to explain the similar defects in BCR-induced B cell proliferation and T cell-independent immune responses in BLNK(-)/-, Btk(-)/-, and PLC-gamma2(-)/- mice.  相似文献   

8.
Src homology region 2 domain-containing phosphatase 1 (SHP-1) is a key mediator in lymphocyte differentiation, proliferation, and activation. We previously showed that B cell linker protein (BLNK) is a physiological substrate of SHP-1 and that B cell receptor (BCR)-induced activation of c-Jun NH(2)-terminal kinase (JNK) is significantly enhanced in cells expressing a form of SHP-1 lacking phosphatase activity (SHP-1-C/S). In this study, we confirmed that SHP-1 also exerts negative regulatory effects on JNK activation in splenic B cells. To further clarify the role of SHP-1 in B cells, we examined how dephosphorylation of BLNK by SHP-1 affects downstream signaling events. When a BLNK mutant (BLNK Delta N) lacking the NH(2)-terminal region, which contains four tyrosine residues, was introduced in SHP-1-C/S-expressing WEHI-231 cells, the enhanced JNK activation was inhibited. Among candidate proteins likely to regulate JNK activation through BLNK, Nck adaptor protein was found to associate with tyrosine-phosphorylated BLNK and this association was more pronounced in SHP-1-C/S-expressing cells. Furthermore, expression of dominant-negative forms of Nck inhibited BCR-induced JNK activation. Finally, BCR-induced apoptosis was suppressed in SHP-1-C/S-expressing cells and coexpression of Nck SH2 mutants or a dominant-negative form of SEK1 reversed this phenotype. Collectively, these results suggest that SHP-1 acts on BLNK, modulating its association with Nck, which in turn negatively regulates JNK activation but exerts a positive effect on apoptosis.  相似文献   

9.
2B4 is an NK cell activation receptor that can provide a co-stimulatory signal to other activation receptors and whose mode of signal transduction is still unknown. We show that cross-linking of 2B4 on NK cells results in its rapid tyrosine phosphorylation, implying that this initial step in 2B4 signaling does not require coligation of other receptors. Ligation of 2B4 in the context of an NK cell-target cell interaction leads to 2B4 tyrosine phosphorylation, target cell lysis, and IFN-gamma release. Coligation of 2B4 with the inhibitory receptors killer cell Ig-like receptor (KIR)2DL1 or CD94/NKG2 completely blocks NK cell activation. The rapid tyrosine phosphorylation of 2B4 observed upon contact of NK cells with sensitive target cells is abrogated when KIR2DL1 or CD94/NKG2 are engaged by their cognate MHC class I ligand on resistant target cells. These results demonstrate that NK inhibitory receptors can interfere with a step as proximal as phosphorylation of an activation receptor.  相似文献   

10.
Interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor induce the rapid phosphorylation of the c-raf protein in the growth factor-dependent FDC-P1 and DA-3 murine myeloid cell lines. Furthermore, immunoprecipitates of c-raf isolated from growth factor-stimulated cells demonstrate a marked increase in intrinsic protein kinase activity as measured in vitro. IL-3 and granulocyte-macrophage colony-stimulating factor induce phosphorylation of c-raf at both serine and tyrosine residues. Antiphosphotyrosine immunoprecipitates from IL-3-stimulated cells demonstrate the rapid and coordinate phosphorylation of both c-raf and a protein co-migrating with the 140-kDa putative IL-3 receptor component. Collectively, the findings of rapid and coordinate ligand-induced phosphorylation of a potential IL-3 growth factor receptor component and cytoplasmic c-raf with concomitant c-raf activation provide a cogent sequential molecular model for linking external growth stimuli to intracellular signal transduction events.  相似文献   

11.
BLNK is a pivotal adaptor protein in the signal transduction pathway from the IgM class B-cell receptor. BLNK is phosphorylated by Syk and binds various signaling intermediates, leading to cellular events including MAP-kinase activation, culminating in cellular activation. It remains unclear how BLNK is initially recruited to the surface IgM (sIgM) complex to which Syk is also recruited. Here we show that CMTM7, a tetra-spanning membrane protein of unknown function, co-localized with clathrin and sIgM at the plasma membrane. RNA-interference-mediated knockdown of CMTM7 expression in B cells resulted in an impairment of sIgM-ligation-induced tyrosine phosphorylation of BLNK, which was due to an impaired interaction of BLNK and Syk, and in a failure to activate JNK and ERK, but not upstream kinases such as Src-family kinases and Syk. CMTM7 was bound to BLNK in a membrane fraction, and their association was augmented after sIgM ligation. Exogenous CMTM7 or a mutant with an N-terminal deletion (ΔN), but not one with a C-terminal deletion (ΔC) that is defective in membrane localization, were able to restore BLNK-Syk binding, BLNK phosphorylation and ERK activation in the CMTM7-knockdown B cells. In addition, CMTM7 and the ΔN, but not the ΔC, were constitutively associated with sIgM, and this binding was required for BLNK recruitment to sIgM. From these data, we conclude that CMTM7 functions to link sIgM and BLNK in the plasma membrane, to recruit BLNK to the vicinity of Syk, and to initiate the BLNK-mediated signal transduction.  相似文献   

12.
13.
Tyrosine phosphorylation of phospholipase Cgamma2 (PLCgamma2) is a crucial activation switch that initiates and maintains intracellular calcium mobilization in response to B cell antigen receptor (BCR) engagement. Although members from three distinct families of non-receptor tyrosine kinases can phosphorylate PLCgamma in vitro, the specific kinase(s) controlling BCR-dependent PLCgamma activation in vivo remains unknown. Bruton's tyrosine kinase (Btk)-deficient human B cells exhibit diminished inositol 1,4,5-trisphosphate production and calcium signaling despite a normal inducible level of total PLCgamma2 tyrosine phosphorylation. This suggested that Btk might modify a critical subset of residues essential for PLCgamma2 activity. To evaluate this hypothesis, we generated site-specific phosphotyrosine antibodies recognizing four putative regulatory residues within PLCgamma2. Whereas all four sites were rapidly modified in response to BCR engagement in normal B cells, Btk-deficient B cells exhibited a marked reduction in phosphorylation of the Src homology 2 (SH2)-SH3 linker region sites, Tyr(753) and Tyr(759). Phosphorylation of both sites was restored by expression of Tec, but not Syk, family kinases. In contrast, phosphorylation of the PLCgamma2 carboxyl-terminal sites, Tyr(1197) and Tyr(1217), was unaffected by the absence of functional Btk. Together, these data support a model whereby Btk/Tec kinases control sustained calcium signaling via site-specific phosphorylation of key residues within the PLCgamma2 SH2-SH3 linker.  相似文献   

14.
The protein-tyrosine kinase Syk couples immune recognition receptors to multiple signal transduction pathways, including the mobilization of calcium and the activation of NFAT. The ability of Syk to regulate signaling is influenced by its phosphorylation on tyrosine residues within the linker B region. The phosphorylation of both Y342 and Y346 is necessary for optimal signaling from the B cell receptor for antigen. The SH2 domains of multiple signaling proteins share the ability to bind this doubly phosphorylated site. The NMR structure of the C-terminal SH2 domain of PLCgamma (PLCC) bound to a doubly phosphorylated Syk peptide reveals a novel mode of phosphotyrosine recognition. PLCC undergoes extensive conformational changes upon binding to form a second phosphotyrosine-binding pocket in which pY346 is largely desolvated and stabilized through electrostatic interactions. The formation of the second binding pocket is distinct from other modes of phosphotyrosine recognition in SH2-protein association. The dependence of signaling on simultaneous phosphorylation of these two tyrosine residues offers a new mechanism to fine-tune the cellular response to external stimulation.  相似文献   

15.
Syk is an important protein-tyrosine kinase in immunoreceptor signaling. FcepsilonRI aggregation in mast cells induces tyrosine phosphorylation and increased enzymatic activity of Syk. The two adjacent tyrosines in the Syk activation loop are thought to be important for the propagation of FcepsilonRI signaling. To evaluate the phosphorylation of these tyrosines in vivo and further understand the relationship of Syk tyrosine phosphorylation with its function, an antibody was developed specific for phosphorylated tyrosines in the activation loop of Syk. FcepsilonRI aggregation on mast cells induced the phosphorylation of both tyrosine residues of the activation loop. The kinase activity of Syk played the major role in phosphorylating its activation loop tyrosines both in vivo and in vitro. In FcepsilonRI-stimulated mast cells, the total Syk tyrosine phosphorylation paralleled the phosphorylation of its activation loop tyrosines and downstream propagation of signals for histamine release. In contrast, the cell surface binding of anti-ganglioside monoclonal antibody AA4 induced only strong general tyrosine phosphorylation of Syk and minimal histamine release and weak phosphorylation of activation loop tyrosines. These results demonstrate that phosphorylation of the activation loop tyrosines is important for mediating receptor signaling and is a better marker of Syk function than is total Syk tyrosine phosphorylation.  相似文献   

16.
Cell surface molecules on lymphocytes positively or negatively modulate the Ag receptor signaling, and thus regulate the fate of the cell. CD22 is a B cell-specific cell surface protein that contains multiple ITIMs in the cytoplasmic tail, and critically regulates B cell activation and survival. CD22 regulation on B cell signaling is complex because CD22 can have both positive and negative roles in various contexts. We generated phosphospecific polyclonal Abs reacting four major CD22 tyrosine motifs (Y762, Y807, Y822, and Y842) and analyzed the pattern and intensity of phosphorylation of these tyrosine residues. The tyrosine motifs, Y762, Y822, and Y842, are considered as ITIM, whereas the other, Y807, is suggested to be important for Grb2 recruitment. Approximately 10% of the four tyrosine residues were constitutively phosphorylated. Upon anti-IgM ligation, CD22 Y762 underwent most rapid phosphorylation, whereas all four tyrosine residues were eventually phosphorylated equally at approximately 35% of all CD22 molecules in the cell. By contrast, anti-CD40 stimulation specifically up-regulated anti-IgM-induced phosphorylation of tyrosines within two ITIM motifs, Y762 and Y842, which was consistent with in vivo finding of the negative role of CD22 in CD40 signaling. Thus, CD22 phosphorylation is not only quantitatively but also qualitatively regulated by different stimulations, which may determine the outcome of B cell signaling.  相似文献   

17.
A requirement for lipid rafts in B cell receptor induced Ca(2+) flux   总被引:4,自引:0,他引:4  
Although the major biochemical events triggered by ligation of the B-cell receptor (BCR) have been well defined [1] [2], little is known about the spatio-temporal organization of BCR signaling components within the cell membrane and the mechanisms by which signaling specificity is achieved. Partitioning of signaling complexes into specialized domains in the plasma membrane may provide a mechanism for channeling specific stimuli into distinct signaling pathways. Here, we report that multiple tyrosine-phosphorylated proteins accumulate transiently upon BCR activation in detergent-insoluble membrane microdomains known as lipid rafts. We found an activation-dependent translocation to the rafts of the BCR itself, as well as phospholipase Cgamma2 (PLCgamma2), an enzyme critical for BCR-induced Ca(2+) flux in B cells. An intact raft structure was required for BCR-induced tyrosine phosphorylation of PLCgamma2 and the induction of Ca(2+) flux. Taken together, these data provide a functional role for lipid rafts in BCR signaling.  相似文献   

18.
G-protein-coupled-receptor kinase 2 (GRK2) plays a key role in the modulation of G-protein-coupled-receptor (GPCR) signaling by both phosphorylating agonist-occupied GPCRs and by directly binding to activated Galphaq subunits, inhibiting downstream effectors activation. The GRK2/Galphaq interaction involves the N-terminal region of the kinase that displays homology to regulators of G-protein signaling (RGS) proteins. We have previously reported that upon GPCR stimulation, GRK2 can be phosphorylated by c-Src on tyrosine residues that are present in the RGS-homology (RH) region of this kinase. Here, we demonstrate that c-Src kinase activity increases the interaction between GRK2 and Galphaq. Tyrosine phosphorylation of GRK2 appears to be critically involved in the modulation of this interaction since the stimulatory effect of c-Src is not observed with a GRK2 mutant with impaired tyrosine phosphorylation (GRK2 Y13,86,92F), whereas a mutant that mimics GRK2 tyrosine phosphorylation in these residues displays an increased interaction with Galphaq. As evidence for a physiological role of this modulatory mechanism, activation of the muscarinic receptor M1, a Galphaq-coupled receptor, promotes an increase in GRK2/Galphaq co-immunoprecipitation that parallels the enhanced GRK2 phosphorylation on tyrosine residues. Moreover, c-Src activation enhances inhibition of the Galphaq/phospholipase Cbeta signaling pathway in intact cells, in a GRK2-tyrosine-phosphorylation-dependent manner. Our results suggest a feedback mechanism by which phosphorylation of GRK2 by c-Src increases both GRK2 kinase activity towards GPCRs and its specific interaction with Galphaq subunits, leading to a more rapid switch off of Galphaq-mediated signaling.  相似文献   

19.
B‐cell receptor (BCR) signaling is essential for the development and function of B cells; however, the spectrum of proteins involved in BCR signaling is not fully known. Here we used quantitative mass spectrometry‐based proteomics to monitor the dynamics of BCR signaling complexes (signalosomes) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation of the receptor‐proximal signaling components, many of which are co‐regulated by both the modifications. We illustrate the power of multilayered proteomic analyses for discovering novel BCR signaling components by demonstrating that BCR‐induced phosphorylation of RAB7A at S72 prevents its association with effector proteins and with endo‐lysosomal compartments. In addition, we show that BCL10 is modified by LUBAC‐mediated linear ubiquitylation, and demonstrate an important function of LUBAC in BCR‐induced NF‐κB signaling. Our results offer a global and integrated view of BCR signaling, and the provided datasets can serve as a valuable resource for further understanding BCR signaling networks.  相似文献   

20.
Phosphorylation-dependent protein-protein interactions provide the mechanism for a large number of intracellular signal transduction pathways. One of the goals of signal transduction research is to understand more precisely the nature of these phosphorylation-dependent interactions. Here, we report a novel strategy based on quantitative proteomics that allows for the rapid analysis of peptide-protein interactions with more than one phosphorylation site involved. The phosphorylation of two tyrosine residues, Y342 and Y346, within the linker B region of the protein-tyrosine kinase Syk is important for optimal signaling from the B cell receptor for antigen. We employed four amino-specific, isobaric reagents to differentially label proteins interacting in vitro with four Syk peptides containing none, one, or two phosphates on tyrosine residues Y342 and Y346, respectively. In total, 76 proteins were identified and quantified, 11 of which were dependent on the phosphorylation of individual tyrosine residues. One of the proteins, peroxiredoxin 1, preferably bound to phosphorylated Y346, which was further verified by Western blotting results. Thus, we demonstrate that the use of 4-fold multiplexing allows for relative protein measurements simultaneously for the identification of interacting proteins dependent on the phosphorylation of specific residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号