首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adhesion of the oral bacterium Streptococcus sanguis CH3 to various polymeric surfaces with surface free energies (gamma s) ranging from 22 to 141 erg cm-2 was investigated. Suspensions containing nine different bacterial concentrations (2.5 X 10(7) to 2.5 X 10(9) cells per ml) were used. After adhesion for 1 h at 21 degrees C and a standardized rinsing procedure, the number of attached bacteria per square centimeter (nb) was determined by scanning electron microscopy. The highest number of bacteria was consistently found on polytetrafluorethylene (gamma s = 22 erg cm-2), and the lowest number was found on glass (gamma s = 141 erg cm-2) at all bacterial concentrations tested. The overall negative correlation between nb and gamma s was weak. However, the slope of the line showing this decrease, calculated from an assumed linear relationship between nb and gamma s, appeared to depend strongly on the bacterial concentration and increased with increasing numbers of bacteria in the suspension. Analysis of the data for each separate polymer showed that the numbers of attached cells on polyvinyl chloride and polypropylene were higher but that those on polycarbonate were lower than would be expected on basis of a linear relationship between nb and gamma s. Desorption experiments were performed by first allowing the bacteria to attach to substrata for 1 h, after which the substrata and attached bacteria were removed to bacterial suspensions containing 10-fold lower bacterial concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The kinetics of adhesion of Streptococcus sanguis CH3 from suspension to polymers with different surface free energies were studied by using three bacterial concentrations (2.5 X 10(7), 2.5 X 10(8), and 2.5 X 10(9) cells per ml-1). Substratum surface free energies (gamma s) ranged from 18 to 120 erg cm-2. The kinetics of bacterial adhesion to these surfaces showed a typical two-step adhesion process, indicating an equilibrium in both steps. In the initial adhesion step (step 1), low equilibrium numbers of adhering bacteria were counted on substrata with surface free energies lower than 55 erg cm-2. A maximal number adhered on substrata with higher surface free energies. At the lowest bacterial concentration tested, the highest number of bacteria were found on substrata with a surface free energy around 55 erg cm-2. For each substratum, step 2 started after a characteristic time interval tau, being short (30 min) for gamma s less than 50 and long (120 min) for gamma s greater than 50 erg cm-2. The relationship between the substratum surface free energy and the number of bacteria adhering at equilibrium after step 2 was similar to, although less distinct than, that during step 1 with a slight indication of a bioadhesive minimum around gamma s = 35 erg cm-2. The results are indicative of a two-step adhesion model, in which step 1 is controlled by macroscopic substratum properties.  相似文献   

3.
The kinetics of adhesion of Streptococcus sanguis CH3 from suspension to polymers with different surface free energies were studied by using three bacterial concentrations (2.5 X 10(7), 2.5 X 10(8), and 2.5 X 10(9) cells per ml-1). Substratum surface free energies (gamma s) ranged from 18 to 120 erg cm-2. The kinetics of bacterial adhesion to these surfaces showed a typical two-step adhesion process, indicating an equilibrium in both steps. In the initial adhesion step (step 1), low equilibrium numbers of adhering bacteria were counted on substrata with surface free energies lower than 55 erg cm-2. A maximal number adhered on substrata with higher surface free energies. At the lowest bacterial concentration tested, the highest number of bacteria were found on substrata with a surface free energy around 55 erg cm-2. For each substratum, step 2 started after a characteristic time interval tau, being short (30 min) for gamma s less than 50 and long (120 min) for gamma s greater than 50 erg cm-2. The relationship between the substratum surface free energy and the number of bacteria adhering at equilibrium after step 2 was similar to, although less distinct than, that during step 1 with a slight indication of a bioadhesive minimum around gamma s = 35 erg cm-2. The results are indicative of a two-step adhesion model, in which step 1 is controlled by macroscopic substratum properties.  相似文献   

4.
A flow cell system was developed which allowed the study of bacterial adhesion to solid substrata at well-defined shear rates. In addition, the system enabled the solid surfaces to be coated with a proteinaceous film under exactly the same shear conditions. In this flow cell system, adhesion of three strains of oral streptococci from a phosphate-buffered solution onto three different substrata was studied as a function of time in the absence and presence of a bovine serum albumin (BSA) coating at a shear rate of 21 s-1. To obtain a wide range in surface free energies (gamma) representative strains (gamma b 38-117 mJ m-2) and solid substrata (gamma s 20-109 mJ m-2) were selected. The number of bacteria adhering was counted microscopically. In the absence of a BSA coating a linear relation was found between the number of bacteria adhering at saturation (nb,s) and the calculated interfacial free energy of adhesion (delta Fadh) for each of the three strains. In the presence of a BSA coating the number of bacteria adhering was greatly decreased in all cases. However, despite the presence of the BSA coating there was still a linear relation between the number of bacteria adhering at saturation and the interfacial free energy of adhesion, calculated on the basis of the surface free energy of the uncoated substrata. It can be concluded that the bare, uncoated substratum still influenced bacterial adhesion in spite of the marked influence of a BSA coating.  相似文献   

5.
An experimental technique is described to determine contact angles on bacterial layers deposited on cellulose triacetate filters. Measurements with water, water-n-propanol mixtures, and alpha-bromonaphthalene were employed to calculate surface free energies of various oral bacteria. Differences of 30 to 40 erg cm-2 were obtained for four different bacterial species isolated from the human oral cavity, if the concept of dispersion and polar surface free energies is applied. The free energies obtained were used to calculate interfacial free energies of adhesion of these bacteria from saliva onto tooth surfaces. Bacterial adhesion is energetically unfavorable, if the enamel surface free energy is less than 50 erg cm-2.  相似文献   

6.
An experimental technique is described to determine contact angles on bacterial layers deposited on cellulose triacetate filters. Measurements with water, water-n-propanol mixtures, and alpha-bromonaphthalene were employed to calculate surface free energies of various oral bacteria. Differences of 30 to 40 erg cm-2 were obtained for four different bacterial species isolated from the human oral cavity, if the concept of dispersion and polar surface free energies is applied. The free energies obtained were used to calculate interfacial free energies of adhesion of these bacteria from saliva onto tooth surfaces. Bacterial adhesion is energetically unfavorable, if the enamel surface free energy is less than 50 erg cm-2.  相似文献   

7.
Thermodynamic aspects of cell spreading on solid substrata   总被引:1,自引:0,他引:1  
To verify the validity of thermodynamic approaches to the prediction of cellular behavior, cell spreading of three different cell types on solid substrata was determined in vitro. Solid substrata as well as cell types were selected on the basis of their surface free energies, calculated from contact angle measurements. The surface free energies of the solid substrata ranged from 18-116 erg cm-2. To measure contact angles on cells, a technique was developed in which a multilayer of cells was deposited on a filter and air dried. Cell surface free energies ranged from 60 erg cm-2 for fibroblasts, and 57 for smooth muscle cells, to 91 for HeLa epithelial cells. After adsorption of serum proteins, cell surface free energies of all three cell types converged to approx 74 erg cm-2. The spreading of these cell types from RPMI 1640 medium on the various solid substrata showed that both in the presence and in the absence of serum proteins in the medium, cells spread poorly on low energy substrata (Ys less than 50 erg cm-2), whereas good cell spreading was observed on the higher energy substrata. Calculations of the interfacial free energy of adhesion (delta Fadh) show that delta Fadh decreases with increasing Ys, and equals zero around 45 erg cm-2 for all three cell types in the presence of serum proteins and for HeLa epithelium cells in the absence of serum proteins. This explains the spreading of these cells on the various substrata upon a thermodynamic basis. The results clearly show that substratum surface free energy has a predictive value with respect to cell spreading in vitro, both in the presence and absence of serum proteins. It is noted, however, that interfacial thermodynamics fail to explain the behavior of fibroblasts and smooth muscle cells in the absence of serum proteins, most likely because of the relatively high surface charges of these two cell types.  相似文献   

8.
I tested the effect of the density of attached bacteria on the amount of algal immigration in the early development of a periphyton community in an artificial stream by manipulating the density of the attached bacteria. Three densities were prepared by regulation of the incubation time. A suspension of algae was added to the stream, and the degree of algal attachment to substrata was compared among the treatments. Algal immigration was proportional to the density of attached bacteria on all substrata (glass, PVC, and slate), although density differed among substrata. Analysis of covariance (dependent variable, amount of attached algae; covariate, bacterial density) showed significant relationship between amounts of attached algae and bacterial densities, but did not show significant differences in the slopes and adjusted means among substrata. When acrylic beads were added with the suspension of attached algae, significant linear correlation was obtained between the amount of attached algae and the amount of acrylic beads on the substrata. Algal immigration was due to non-selective adsorption by attached bacterial biofilms on substrata, although the extent of bacterial colonization and biofilm formation may be affected by the substrata and other environmental factors (e.g., current conditions and water temperature).  相似文献   

9.
Abstract The reversibility of adhesion of 3 representative strains of oral streptococci from a phosphate-buffered suspension onto 5 different solid substrata was studied.
Streptococcus mitis T9 (surface free energy γb= 39 mJ · m−2). Streptococcus sanguis CH3 (γb= 95 mJ · m−2) and Streptococcus mutans NS (γb= 117 mJ · m−2) were selected on basis of their surface free energy. Solid substrata were employed with a surface free energy γs ranging from 20 mJ · m−2 for polytetrafluorethylene to 109 mJ · m−2 for glass. Bacterial suspensions containing 2.5 × 109 cells per ml were incubated with 2 samples of each substratum. After 1 h the number of adhering bacteria was evaluated on one sample, while the second sample was kept for another hour at a 10-fold lower bacterial concentration. Bacteria with a low surface free energy desorbed only from substrata with a high surface free energy, while bacteria with a high surface free energy desorbed from substrata with a low surface free energy. Thus low energy bacterial strains adhered reversibly to high energy substrata and vice versa. Similar observations were made with polystyrene particles. Calculation of the interfacial free energy of adhesion (Δ F adh) for each bacterial strain as well as for the polystyrene particles showed that a reversible adhesion was associated with a positive Δ F adh, denoting unfavourable adhesion conditions upon a thermodynamic basis.  相似文献   

10.
Adhesion of the bacterial strain Staphylococcus epidermidis 3399 to titanium-oxy-nitride (TiNOX) substrata with different specific resistivities was studied in a parallel plate flow chamber, while simultaneously measuring the electric potential of the substrata. During adhesion, bacteria either donated or accepted electrons to the substrata depending on the specific resistivity of the substratum and bacteria that had donated electrons to the substratum adhered more strongly than bacteria that had accepted electrons from the substratum. These results demonstrate that electron transfer plays a role in bacterial adhesion to conducting surfaces, which has hitherto been neglected.  相似文献   

11.
Surface thermodynamics of bacterial adhesion.   总被引:37,自引:23,他引:14       下载免费PDF全文
The adhesion of five strains of bacteria, i.e., Staphylococcus aureus (strain 049), Staphylococcus epidermidis (strain 047), Escherichia coli (strains 055 and 2627), and Listeria monocytogenes, to various polymeric surfaces was studied. The design of the experimental protocol was dictated by thermodynamic considerations. From the thermodynamic model for the adhesion of small particles from a suspension onto a solid substratum, it follows that the extent of adhesion is determined by the surface properties of all three phases involved, i.e., the surface tensions of the adhering particles, of the substrate, and of the suspending liquid medium. In essence, adhesion is more extensive to hydrophilic substrata (i.e., substrata of relatively high surface tension) than to hydrophobic substrata, when the surface tension of the bacteria is larger than that of the suspending medium. When the surface tension of the suspending liquid is larger than that of the bacteria, the opposite pattern of behavior prevails. Suspensions of bacteria at a concentration of 10(8) microorganisms per ml were brought into contact with several polymeric surfaces (Teflon, polyethylene, polystyrene, and acetal and sulfonated polystyrene) for 30 min at 20 degrees C. After rinsing, the number of bacteria adhering per unit surface area was determined by image analysis. The surface tension of the suspending medium. Hanks balanced salt solution, was modified through the addition of various amounts of dimethyl sulfoxide. It was found that the number of bacteria adhering per unit surface area correlates well with the thermodynamic predictions and that these data may be used to determine the surface tension of the different bacterial species. The surface tensions of the bacteria obtained in this fashion are in excellent agreement with those obtained by other methods.  相似文献   

12.
The attachment of a marine Pseudomonas sp. to a variety of surfaces was investigated, and the number of bacteria which became attached was related to the surface charge and degree of hydrophobicity of the substratum. Large numbers of bacteria attached to hydrophobic plastics with little or no surface charge [Teflon, polyethylene, polystyrene, poly(ethylene terephthalate)]; moderate numbers attached to hydrophilic metals with a positive (platinum) or neutral (germanium) surface charge; and very few attached to hydrophilic, negatively charged substrata (glass, mica, oxidized plastics). The results suggest that both electrostatic and hydrophobic interactions are involved in bacterial attachment.  相似文献   

13.

Laboratory experiments were conducted to study the interaction between adhesion of the bacterium Halomonas marina to substrata of different wettabilities, the combination of which has been demonstrated to influence the attachment response of cyprid larvae of the barnacle Balanus amphitrite. Cyprid attachment in the presence of bacterial films was shown to be inhibited when films were on polystyrene but not on tissue‐culture polystyrene or glass. Using an enzyme‐linked lectin assay, bacteria on polystyrene showed an increase in binding of the lectin concanavalin A compared to bacteria on tissue‐culture treated polystyrene, indicating a difference in surface polymers associated with H. marina when attached to different substrata. Although bacterial growth supernatants when adsorbed to polystyrene were inhibitory to barnacle attachment, exopolysaccharides, to which the lectins may be binding, were not inhibitory. The data indicate that adhesion of films of bacteria to polystyrene alters the exopolymer production by H. marina and it is suggested that this change may be involved in the inhibition of cyprid attachment. However, the inhibition of cyprid larvae does not appear to be associated with the exopolysaccharides of the bacterium.  相似文献   

14.
The role that bacterial surface hydrophobicity (surface tension) plays in determining the extent of adhesion of polymer substrates and phagocytic ingestion is reviewed. The early attachment phase in bacterial adhesion is shown to depend critically on the relative surface tensions of the three interacting phases; i.e., bacteria, substrate, and suspending liquid surface tension. When suspended in a liquid with a high surface tension such as Hanks balanced salt solution, the most hydrophobic bacteria adhere to all surfaces to the greatest extent. When the liquid surface tension (gamma LV) is larger than the bacterial surface tension (gamma BV), then for any single bacterial species the extent of adhesion decreases with increasing substrate surface tension (gamma SV). When gamma LV less than gamma BV then adhesion increases with increasing gamma SV. Bacterial surface tension also determines in part the extent of phagocytic ingestion and the degree to which antibodies specifically adsorb onto the bacterium resulting in opsonization. The nonspecific adsorption of antibodies results in a considerable modification in the surface properties of the bacteria. Bacterial surface hydrophobicity can be altered significantly through exposure to subinhibitory concentrations of antibiotics, surfactants, lectins, etc. The effect of these changes on subsequent phagocytic ingestion is discussed.  相似文献   

15.
The adhesion of Streptococcus mitis to solid substrata from phosphate suspensions with various ionic strengths was studied and compared with the adhesion of polystyrene particles. At all ionic strengths, the interfacial free energy of adhesion governed the relative number of bacteria or polystyrene particles adhering at equilibrium, except that in a low-ionic-strength buffer, adhesion occurred less frequently because of increased electrostatic repulsion. Large differences between bacterial and polystyrene particle adhesion were observed, as indicated by the ratio of bacteria to polystyrene particles adhering, which decreased from 30 to 4 with a change from low to high ionic strength.  相似文献   

16.
The adhesion of Streptococcus mitis to solid substrata from phosphate suspensions with various ionic strengths was studied and compared with the adhesion of polystyrene particles. At all ionic strengths, the interfacial free energy of adhesion governed the relative number of bacteria or polystyrene particles adhering at equilibrium, except that in a low-ionic-strength buffer, adhesion occurred less frequently because of increased electrostatic repulsion. Large differences between bacterial and polystyrene particle adhesion were observed, as indicated by the ratio of bacteria to polystyrene particles adhering, which decreased from 30 to 4 with a change from low to high ionic strength.  相似文献   

17.
The relationships among surface energy, adsorbed organic matter, and attached bacterial growth were examined by measuring the degradation of adsorbed ribulose-1,5-bisphosphate carboxylase (a common algal protein) by attached bacteria (Pseudomonas strain S9). We found that surface energy (work of adhesion of water) determined the amount and availability of adsorbed protein and, consequently, the growth of attached bacteria. Percent degradation of adsorbed ribulose-1,5-bisphosphate carboxylase decreased with increasing hydrophobicity of the surface (decreasing work of adhesion). As a result, growth rates of attached bacteria were initially higher on hydrophilic glass than on hydrophobic polyethylene. However, during long (6-h) incubations, growth rates increased with surface hydrophobicity because of increasing amounts of adsorbed protein. Together with previous studies, these results suggest that the number of attached bacteria over time will be a complex function of surface energy. Whereas both protein adsorption and bacterial attachment decrease with increasing surface energy, availability of adsorbed protein and consequently initial bacterial growth rates increase with surface energy.  相似文献   

18.
The competing mechanisms that regulate adhesion of bacteria to surfaces and subsequent biofilm formation remain unclear, though nearly all studies have focused on the role of physical and chemical properties of the material surface. Given the large monetary and health costs of medical-device colonization and hospital-acquired infections due to bacteria, there is considerable interest in better understanding of material properties that can limit bacterial adhesion and viability. Here we employ weak polyelectrolyte multilayer (PEM) thin films comprised of poly(allylamine) hydrochloride (PAH) and poly(acrylic acid) (PAA), assembled over a range of conditions, to explore the physicochemical and mechanical characteristics of material surfaces controlling adhesion of Staphylococcus epidermidis bacteria and subsequent colony growth. Although it is increasingly appreciated that eukaryotic cells possess subcellular structures and biomolecular pathways to sense and respond to local chemomechanical environments, much less is known about mechanoselective adhesion of prokaryotes such as these bacteria. We find that adhesion of viable S. epidermidis correlates positively with the stiffness of these polymeric substrata, independently of the roughness, interaction energy, and charge density of these materials. Quantitatively similar trends observed for wild-type and actin analogue mutant Escherichia coli suggest that these results are not confined to only specific bacterial strains, shapes, or cell envelope types. These results indicate the plausibility of mechanoselective adhesion mechanisms in prokaryotes and suggest that mechanical stiffness of substrata materials represents an additional parameter that can regulate adhesion of and subsequent colonization by viable bacteria.  相似文献   

19.
New method to study bacterial adhesion to meat.   总被引:1,自引:1,他引:0       下载免费PDF全文
A new method was developed for the study of bacterial adhesion to meat surfaces. Thin slices of meat (40 microns thick) were inserted into a specially designed observation chamber. The meat slices were then exposed to a bacterial suspension (ca. 10(6) CFU.ml-1) to initiate adhesion (20 min of contact time) and subsequently rinsed to eliminate nonadherent bacteria. Because of the special chamber design, the disruptive force exerted on the bacteria during rinsing (shear stress) was uniform over the whole surface of the meat slices, was constant, and could be varied from 0 to 0.08 N.m-2. After being rinsed, the meat slices were stained with basic fuschin and observed under light microscopy to determine the number and distribution of adherent bacteria. This new method was used to study the adhesion of Acinetobacter strain LD2, a Lactobacillus sp., and Pseudomonas fluorescens to slices of beef fat and tendon. At 25 degrees C, most (greater than or equal to 99.9%) of the cells of the Lactobacillus sp. deposited on the meat were washed off the surface during rinsing (0.05 N.m-2), whereas a large number (ca. 10(5) CFU.cm-2) of Acinetobacter strain LD2 and P. fluorescens cells remained adherent. The extent of adhesion was similar on fat and tendon, and adherent bacteria were distributed evenly over the whole surface of the slices. This preliminary study indicates that the combined use of thin slices of meat and of the observation chamber provides us with the means to more accurately study bacterial adhesion to meat surfaces.  相似文献   

20.
A new method was developed for the study of bacterial adhesion to meat surfaces. Thin slices of meat (40 microns thick) were inserted into a specially designed observation chamber. The meat slices were then exposed to a bacterial suspension (ca. 10(6) CFU.ml-1) to initiate adhesion (20 min of contact time) and subsequently rinsed to eliminate nonadherent bacteria. Because of the special chamber design, the disruptive force exerted on the bacteria during rinsing (shear stress) was uniform over the whole surface of the meat slices, was constant, and could be varied from 0 to 0.08 N.m-2. After being rinsed, the meat slices were stained with basic fuschin and observed under light microscopy to determine the number and distribution of adherent bacteria. This new method was used to study the adhesion of Acinetobacter strain LD2, a Lactobacillus sp., and Pseudomonas fluorescens to slices of beef fat and tendon. At 25 degrees C, most (greater than or equal to 99.9%) of the cells of the Lactobacillus sp. deposited on the meat were washed off the surface during rinsing (0.05 N.m-2), whereas a large number (ca. 10(5) CFU.cm-2) of Acinetobacter strain LD2 and P. fluorescens cells remained adherent. The extent of adhesion was similar on fat and tendon, and adherent bacteria were distributed evenly over the whole surface of the slices. This preliminary study indicates that the combined use of thin slices of meat and of the observation chamber provides us with the means to more accurately study bacterial adhesion to meat surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号