首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.  相似文献   

2.
pp125FAK is a tyrosine kinase that appears to regulate the assembly of focal adhesions and thereby promotes cell spreading on the extracellular matrix. In some cells, the C terminus of pp125FAK is expressed as a separate protein, pp41/43FRNK. We have previously shown that overexpression of pp41/43FRNK inhibits tyrosine phosphorylation of pp125FAK and paxillin and, in addition, delays cell spreading and focal adhesion assembly. Thus, pp41/43FRNK functions as a negative inhibitor of adhesion signaling and provides a tool to dissect the mechanism by which pp125FAK promotes cell spreading. We report here that the inhibitory effects of pp41/43FRNK expression can be rescued by the co-overexpression of wild-type pp125FAK and partially rescued by catalytically inactive variants of pp125FAK. However, coexpression of an autophosphorylation site mutant of pp125FAK, which fails to bind the SH2 domain of pp60c-Src, or a mutant that fails to bind paxillin did not promote cell spreading. In contrast, expression of pp41/43FRNK and pp60c-Src reconstituted cell spreading and tyrosine phosphorylation of paxillin but did so without inducing tyrosine phosphorylation of pp125FAK. These data provide additional support for a model whereby pp125FAK acts as a "switchable adaptor" that recruits pp60c-Src to phosphorylate paxillin, promoting cell spreading. In addition, these data point to tyrosine phosphorylation of paxillin as being a critical step in focal adhesion assembly.  相似文献   

3.
Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.  相似文献   

4.
5.
为阐明整合素 β3 粘着斑激酶 (FAK)信号途径在骨桥蛋白 (OPN)诱导血管平滑肌细胞(VSMC)迁移中的作用 ,用FAK磷酸化特异性抑制剂粘着斑相关非激酶 (FRNK)选择性阻断FAK磷酸化 ,观察对OPN 整合素 β3 相互作用所激活的FAK信号通路的影响及其与OPN诱导VSMC迁移之间的关系 .外源性FRNK在VSMC中的过表达可显著抑制OPN诱导的VSMC迁移 ,使跨膜迁移细胞数下降 5 0 5 8% (P <0 0 5 ) .OPN刺激不但明显诱导FAK表达 ,而且还促进其磷酸化 .外源性FRNK对OPN诱导的FAK磷酸化具有显著抑制作用 ,使磷酸化型FAK水平比相应对照细胞下降5 9 1% ,但其对FAK表达不产生明显的影响 .FRNK还具有下调整合素 β3 表达的作用 ,免疫荧光细胞化学分析结果显示 ,在转染FRNK的VSMC中 ,粘着斑蛋白的磷酸化水平降低 ,粘着斑数量明显减少 .结果提示 ,整合素 β3 FAK是介导VSMC迁移的重要信号途径 ,外源性FRNK通过下调 β3 表达、抑制FAK磷酸化和减少粘着斑蛋白磷酸化及粘着斑形成等机制 ,减弱OPN刺激信号的跨膜转导及沿胞内途径传递 ,发挥抑制OPN促VSMC迁移的效应 .  相似文献   

6.
Interleukin-1 (IL-1) signaling in fibroblasts is mediated through focal adhesions, organelles that are enriched with adaptor and cytoskeletal proteins that regulate signal transduction. We examined interactions of the focal adhesion kinase (FAK) with protein-tyrosine phosphatase-α (PTP-α) in IL-1 signaling. In wild type and FAK knock-out mouse embryonic fibroblasts, we found by immunoblotting, immunoprecipitation, immunostaining, and gene silencing that FAK is required for IL-1-mediated sequestration of PTPα to focal adhesions. Immunoprecipitation and pulldown assays of purified proteins demonstrated a direct interaction between FAK and PTPα, which was dependent on the FAT domain of FAK and by an intact membrane-proximal phosphatase domain of PTPα. Recruitment of PTPα to focal adhesions, IL-1-induced Ca2+ release from the endoplasmic reticulum, ERK activation, and IL-6, MMP-3, and MMP-9 expression were all blocked in FAK knock-out fibroblasts. These processes were restored in FAK knock-out cells transfected with wild type FAK, FAT domain, and FRNK. Our data indicate that IL-1-induced signaling through focal adhesions involves interactions between the FAT domain of FAK and PTPα.  相似文献   

7.
Humoral factors and extracellular matrix are critical co-regulators of smooth muscle cell (SMC) migration and proliferation. We reported previously that focal adhesion kinase (FAK)-related non-kinase (FRNK) is expressed selectively in SMC and can inhibit platelet-derived growth factor BB homodimer (PDGF-BB)-induced proliferation and migration of SMC by attenuating FAK activity. The goal of the current studies was to identify the mechanism by which FAK/FRNK regulates SMC growth and migration in response to diverse mitogenic signals. Transient overexpression of FRNK in SMC attenuated autophosphorylation of FAK at Tyr-397, reduced Src family-dependent tyrosine phosphorylation of FAK at Tyr-576, Tyr-577, and Tyr-881, and reduced phosphorylation of the FAK/Src substrates Cas and paxillin. However, FRNK expression did not alter the magnitude or dynamics of ERK activation induced by PDGF-BB or angiotensin II. Instead, FRNK expression markedly attenuated PDGF-BB-, angiotensin II-, and integrin-stimulated Rac1 activity and attenuates downstream signaling to JNK. Importantly, constitutively active Rac1 rescued the proliferation defects in FRNK expressing cells. Based on these observations, we hypothesize that FAK activation is required to integrate integrin signals with those from receptor tyrosine kinases and G protein-coupled receptors through downstream activation of Rac1 and that in SMC, FRNK may control proliferation and migration by buffering FAK-dependent Rac1 activation.  相似文献   

8.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

9.
Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538-540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [(3)H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals.  相似文献   

10.
It has been proposed that the focal adhesion kinase (FAK) mediates focal adhesion formation through tyrosine phosphorylation during cell adhesion. We investigated the role of FAK in focal adhesion structure and function. Loading cells with a glutathione-S-transferase fusion protein (GST-Cterm) containing the FAK focal adhesion targeting sequence, but not the kinase domain, decreased the association of endogenous FAK with focal adhesions. This displacement of endogenous FAK in both BALB/c 3T3 cells and human umbilical vein endothelial cells loaded with GST-Cterm decreased focal adhesion phosphotyrosine content. Neither cell type, however, exhibited a reduction in focal adhesions after GST-Cterm loading. These results indicate that FAK mediates adhesion-associated tyrosine phosphorylation, but not the formation of focal adhesions. We then examined the effect of inhibiting FAK function on other adhesion-dependent cell behavior. Cells microinjected with GST-Cterm exhibited decreased migration. In addition, cells injected with GST-Cterm had decreased DNA synthesis compared with control-injected or noninjected cells. These findings suggest that FAK functions in the regulation of cell migration and cell proliferation.  相似文献   

11.
The carboxy-terminal 150 residues of the focal adhesion kinase (FAK) comprise the focal adhesion-targeting sequence, which is responsible for its subcellular localization. The mechanism of focal adhesion targeting has not been fully elucidated. We describe a mutational analysis of the focal adhesion-targeting sequence of FAK to further examine the mechanism of focal adhesion targeting and explore additional functions encoded by the carboxy-terminus of FAK. The results demonstrate that paxillin binding is dispensable for focal adhesion targeting of FAK. Cell adhesion-dependent tyrosine phosphorylation strictly correlated with the ability of mutants to target to focal adhesions. Focal adhesion targeting was also a requirement for maximal FAK-dependent tyrosine phosphorylation of paxillin and FAK-related nonkinase (FRNK)-dependent inhibition of endogenous FAK function. However, there were additional requirements for these latter functions because we identified mutants that target to focal adhesions, yet are defective for the induction of paxillin phosphorylation or the dominant-negative function of FRNK. Furthermore, the paxillin-binding activity of FRNK mutants did not correlate with their ability to inhibit FAK, suggesting that FRNK has other targets in addition to paxillin.  相似文献   

12.
Integrin-associated intracellular Ca(2+) oscillations modulate cell migration, probably by controlling integrin-mediated release of the cell rear during migration. Focal adhesion kinase (FAK), via its tyrosine phosphorylation activity, plays a key role in integrin signaling. In human U87 astrocytoma cells, expression of the dominant negative FAK-related non-kinase domain (FRNK) inhibits the Ca(2+)-sensitive component of serum-dependent migration. We investigated how integrin-associated Ca(2+) signaling might be coupled to focal adhesion (FA) dynamics by visualizing the effects of Ca(2+) spikes on FAs using green fluorescent protein (GFP)-tagged FAK and FRNK. We report that Ca(2+) spikes are temporally correlated with movement and disassembly of FAs, but not their formation. FRNK transfection did not affect generation of Ca(2+) spikes, although cell morphology was altered, with fewer FAs of larger size and having a more peripheral localization being observed. Larger sized FAs in FRNK-transfected cells were not disassembled by Ca(2+) spikes, providing a possible explanation for impaired Ca(2+)-dependent migration in these cells. Stress fiber end movements initiated by Ca(2+) spikes were visualized using GFP-tagged myosin light chain kinase (MLCK). Ca(2+)-associated movements of stress fiber ends and FAs had similar kinetics, suggesting that stress fibers and FAs move in a coordinated fashion. This indicates that increases in Ca(2+) likely trigger disassembly of adhesive structures that involves disruption of integrin-extracellular matrix interactions, supporting a key role for Ca(2+)-sensitive inside-out signaling in cell migration. A rapid increase in tyrosine phosphorylation of FAK was found in response to an elevation in Ca(2+) induced by thapsigargin, and we propose that this represents the initial triggering event linking Ca(2+) signaling and FA dynamics to cell motility.  相似文献   

13.
Cells utilize dynamic interactions with the extracellular matrix to adapt to changing environmental conditions. Thrombospondin 1 (TSP1) induces focal adhesion disassembly and cell migration through a sequence (hep I) in its heparin-binding domain signaling through the calreticulin-low density lipoprotein receptor-related protein receptor complex. This involves the Galphai-dependent activation of ERK and phosphoinositide (PI) 3-kinase, both of which are required for focal adhesion disassembly. Focal adhesion kinase (FAK) regulates adhesion dynamics, acting in part by modulating RhoA activity, and FAK is implicated in ERK and PI 3-kinase activation. In this work, we sought to determine the role of FAK in TSP1-induced focal adhesion disassembly. TSP1/hep I does not stimulate focal adhesion disassembly in FAK knockout fibroblasts, whereas re-expressing FAK rescues responsiveness. Inhibiting FAK signaling through FRNK or FAK Y397F expression in endothelial cells also abrogates this response. TSP1/hep I stimulates a transient increase in FAK phosphorylation that requires calreticulin and Galphai, but not ERK or PI 3-kinase. Hep I does not activate ERK or PI 3-kinase in FAK knockout fibroblasts, suggesting activation occurs downstream of FAK. TSP1/hep I stimulates RhoA inactivation with kinetics corresponding to focal adhesion disassembly in a FAK, ERK, and PI 3-kinase-dependent manner. Furthermore, hep I does not stimulate focal adhesion disassembly in cells expressing constitutively active RhoA, suggesting that RhoA inactivation is required for this response. This is the first work to illustrate a connection between FAK phosphorylation in response to a soluble factor and RhoA inactivation, as well as the first report of PI 3-kinase and ERK in FAK regulation of RhoA activity.  相似文献   

14.
Focal adhesion kinase (FAK) was first identified as a viral Src (v-Src) substrate, but the role of FAK in Src transformation events remains undefined. We show that stable expression of the FAK C-terminal domain (termed FRNK) in v-Src-transformed NIH 3T3 fibroblasts inhibited cell invasion through Matrigel and blocked experimental metastases in nude mice without effects on cell motility. FRNK inhibitory activity was dependent upon its focal contact localization. FRNK expression disrupted the formation of a v-Src-FAK signaling complex, inhibited p130Cas tyrosine phosphorylation, and attenuated v-Src-stimulated ERK and JNK kinase activation. However, FRNK did not affect v-Src-stimulated Akt activation, cell growth in soft agar, or subcutaneous tumor formation in nude mice. FRNK-expressing cells exhibited decreased matrix metalloproteinase-2 (MMP-2) mRNA levels and MMP-2 secretion. Transient FRNK expression in human 293 cells inhibited exogenous MMP-2 promoter activity and overexpression of wild-type but not catalytically-inactive (Ala-404) MMP-2 rescued v-Src-stimulated Matrigel invasion in the presence of FRNK. Our findings show the importance of FAK in Src-stimulated cell invasion and support a role for Src-FAK signaling associated with elevated tumor cell metastases.  相似文献   

15.
Direct interaction of focal adhesion kinase with p190RhoGEF   总被引:12,自引:0,他引:12  
Focal adhesion kinase (FAK) is a protein-tyrosine kinase that associates with multiple cell surface receptors and signaling proteins through which it can modulate the activity of several intracellular signaling pathways. FAK activity can influence the formation of distinct actin cytoskeletal structures such as lamellipodia and stress fibers in part through effects on small Rho GTPases, although the molecular interconnections of these events are not well defined. Here, we report that FAK interacts with p190RhoGEF, a RhoA-specific GDP/GTP exchange factor, in neuronal cells and in brain tissue extracts by co-immunoprecipitation and co-localization analyses. Using a two-hybrid assay and deletion mutagenesis, the binding site of the FAK C-terminal focal adhesion targeting (FAT) domain was identified within the C-terminal coiled-coil domain of p190RhoGEF. Binding was independent of a LD-like binding motif within p190RhoGEF, yet FAK association was disrupted by a mutation (Leu-1034 to Ser) that weakens the helical bundle structure of the FAK FAT domain. Neuro-2a cell binding to laminin increased endogenous FAK and p190RhoGEF tyrosine phosphorylation, and co-transfection of a dominant-negative inhibitor of FAK activity, termed FRNK, inhibited lamininstimulated p190RhoGEF tyrosine phosphorylation and p21 RhoA GTP binding. Overexpression of FAK in Neuro-2a cells increased both endogenous p190RhoGEF tyrosine phosphorylation and RhoA activity, whereas these events were inhibited by FRNK co-expression. Because insulin-like growth factor 1 treatment of Neuro-2a cells increased FAK tyrosine phosphorylation and enhanced p190RhoGEF-mediated activation of RhoA, our results support the conclusion that FAK association with p190RhoGEF functions as a signaling pathway downstream of integrins and growth factor receptors to stimulate Rho activity.  相似文献   

16.
17.
The focal adhesion (FAK) non-receptor protein-tyrosine kinase (PTK) links both extracellular matrix/integrin and growth factor stimulation to intracellular signals promoting cell migration. Here we show that both transient and stable overexpression of the FAK C-terminal domain termed FRNK (FAK-related non-kinase) inhibits serum and platelet-derived growth factor (PDGF)-BB-induced vascular smooth muscle cell (SMC) migration in wound healing and in vitro Boyden Chamber chemotaxis assays, respectively. Expression of FRNK, but not a point mutant of FRNK (FRNK L1034S), disrupted the formation of a complex containing both FAK and the activated PDGF-beta receptor and resulted in reduced tyrosine phosphorylation of endogenous FAK at the Tyr-397 binding site for Src family PTKs. As demonstrated using FAK-deficient and FAK-reconstituted fibroblasts, FAK positively contributed to PDGF-BB-stimulated ERK2/MAP kinase activity, and in SMCs, ERK2/MAP kinase activity was required for PDGF-BB-stimulated chemotaxis. Stable expression of FRNK but not FRNK L1034S expression in SMCs lowered the extent and duration of stimulated ERK2/MAP kinase activation at low but not at high PDGF-BB concentrations. Importantly, stable expression of FRNK in SMCs did not affect SMC morphology or proliferation in culture. Because the increased migration of vascular SMCs in response to extracellular matrix proteins and growth factors contributes to neointima formation, our results show that FAK inhibition by FRNK expression may provide a novel approach to regulate abnormal vascular SMC migration in vivo.  相似文献   

18.
Src family kinases (SFKs) are crucial for signaling through a variety of cell surface receptors, including integrins. There is evidence that integrin activation induces focal adhesion kinase (FAK) autophosphorylation at Y397 and that Src binds to and is activated by FAK to carry out subsequent phosphorylation events. However, it has also been suggested that Src functions as a scaffolding molecule through its SH2 and SH3 domains and that its kinase activity is not necessary. To examine the role of SFKs in integrin signaling, we have expressed various Src molecules in fibroblasts lacking other SFKs. In cells plated on fibronectin, FAK could indeed autophosphorylate at Y397 independently of Src but with lower efficiency than when Src was present. This step was promoted by kinase-inactive Src, but Src kinase activity was required for full rescue. Src kinase activity was also required for phosphorylation of additional sites on FAK and for other integrin-directed functions, including cell migration and spreading on fibronectin. In contrast, Src mutations in the SH2 or SH3 domain greatly reduced binding to FAK, Cas, and paxillin but had little effect on tyrosine phosphorylation or biological assays. Furthermore, our indirect evidence indicates that Src kinase activity does not need to be regulated to promote cell migration and FAK phosphorylation. Although Src clearly plays important roles in integrin signaling, it was not concentrated in focal adhesions. These results indicate that the primary role of Src in integrin signaling is as a kinase. Indirect models for Src function are proposed.  相似文献   

19.
Fibroblast migration plays an important role in the normal wound healing process; however, dysregulated cell migration may contribute to the progressive formation of fibrotic lesions in the diseased condition. To examine the role of focal-adhesion-kinase (FAK)-related non-kinase (FRNK) in regulation of fibrotic lung fibroblast migration, we examined cell migration, FRNK expression, and activation of focal adhesion kinase (FAK) and Rho GTPase (Rho and Rac) in primary lung fibroblasts derived from both idiopathic pulmonary fibrosis (IPF) patients and normal human controls. Fibrotic (IPF) lung fibroblasts have increased cell migration when compared to control human lung fibroblasts. FRNK expression is significantly reduced in IPF lung fibroblasts, while activation of FAK, Rho and Rac is increased in IPF lung fibroblasts. Endogenous FRNK expression is inversely correlated with FAK activation and cell migration rate in IPF lung fibroblasts. Forced exogenous FRNK expression abrogates the increased cell migration, and blocked the activation of FAK and Rho GTPase (Rho and Rac), in IPF lung fibroblasts. These data for the first time provide evidence that downregulation of endogenous FRNK plays a role in promoting cell migration through FAK and Rho GTPase in fibrotic IPF lung fibroblasts.  相似文献   

20.
In endothelial cells, vascular endothelial growth factor (VEGF) induces an accumulation of stress fibers associated with new actin polymerization and rapid formation of focal adhesions at the ventral surface of the cells. This cytoskeletal reorganization results in an intense motogenic activity. Using porcine endothelial cells expressing one or the other type of the VEGF receptors, VEGFR1 or VEGFR2, or human umbilical vein endothelial cells pretreated with a VEGFR2 neutralizing antibody, we show that VEGFR2 is responsible for VEGF-induced activation of the stress-activated protein kinase-2/p38 (SAPK2/p38), phosphorylation of focal adhesion kinase (FAK), and enhanced migratory activity. Activation of SAPK2/p38 triggered actin polymerization whereas FAK, which was phosphorylated independently of SAPK2/p38, initiated assembly of focal adhesions. Both processes contributed to the formation of stress fibers. Geldanamycin, an inhibitor of HSP90 blocked tyrosine phosphorylation of FAK, assembly of focal adhesions, actin reorganization, and cell migration, all of which were reversed by overexpressing HSP90. We conclude that VEGFR2 mediates the physiological effect of VEGF on cell migration and that two independent pathways downstream of VEGFR2 regulate actin-based motility. One pathway involves SAPK2/p38 and leads to enhanced actin polymerization activity. The other involves HSP90 as a permissive signal transduction factor implicated in FAK phosphorylation and assembly of focal adhesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号