首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1994,127(6):1923-1932
Normal and genetically engineered skeletal muscle cells (myoblasts) show promise as drug delivery vehicles and as therapeutic agents for treating muscle degeneration in muscular dystrophies. A limitation is the immune response of the host to the transplanted cells. Allogeneic myoblasts are rapidly rejected unless immunosuppressants are administered. However, continuous immunosuppression is associated with significant toxic side effects. Here we test whether immunosuppressive treatment, administered only transiently after allogeneic myoblast transplantation, allows the long-term survival of the transplanted cells in mice. Two immunosuppressive treatments with different modes of action were used: (a) cyclosporine A (CSA); and (b) monoclonal antibodies to intracellular adhesion molecule-1 and leukocyte function- associated molecule-1. The use of myoblasts genetically engineered to express beta-galactosidase allowed quantitation of the survival of allogeneic myoblasts at different times after cessation of the immunosuppressive treatments. Without host immunosuppression, allogeneic myoblasts were rejected from all host strains tested, although the relative time course differed as expected for low and high responder strains. The allogeneic myoblasts initially fused with host myofibers, but these hybrid cells were later destroyed by the massive immunological response of the host. However, transient immunosuppressive treatment prevented the hybrid myofiber destruction and led to their long-term retention. Even four months after the cessation of treatment, the hybrid myofibers persisted and no inflammatory infiltrate was present in the tissue. Such long-term survival indicates that transient immunosuppression may greatly increase the utility of myoblast transplantation as a therapeutic approach to the treatment of muscle and nonmuscle disease.  相似文献   

2.
Cell transplantation has potential benefits for tissue replacement in the the enhancement of tissue regeneration and as cell-mediated gene therapy for systemic diseases. The transplantation of myoblasts into skeletal muscle also allows gene transfer into cells of the host since myoblasts fuse with host fibers thereby forming hybrid myofibers. The success of myoblast transplantation can be determined by a variety of measures, such as the percentage of myoblasts that fuse, the number of hybrid myofibers formed, or the level of transgene expression. Each measure is a reflection of the fate of the transplanted cells. In order to compare different measures of transplantation efficacy, we followed the fate of transplanted myoblasts expressing the marker enzyme β-galactosidase (β-gal) in two different assays. Two weeks after transplantation, the number of hybrid myofibers was determined histochemically, whereas transgene (β-gal) expression was measured biochemically. To control for variabilities of transplantation among different animals, we obtained both measurements from each muscle by using alternate cryosections in the two assays. Within each individual muscle, both hybrid fiber number and/β-gal expression were maximal at the site of implantation and diminished in parallel with distance from the site. However, for determining the success of transplantation among groups of muscles, these two measures of efficacy yielded discordant results: the transplants with the highest number of hybrid fibers were not the transplants with the greatest β-gal activity. Such discrepancies are likely due to regional variations at the transplantation site that arise when cells are introduced into a solid tissue. These results demonstrate the importance of multiple measures of cell fate and transplantation efficacy for studies of cell trans-plantation and for the application of such studies to cell therapy and cell-mediated gene therapy.  相似文献   

3.
Xenogeneic antisera raised in rabbits have been used to detect compositional changes at the cell surfaces of differentiating embryonic chick skeletal muscle. In this report, we present the serological characterization of antiserum (Anti-M-24) against muscle tissue and developmental stage-specific cell surface antigens of the prefusion myoblast. Cells from primary cultures of 12-d-old embryonic chick hindlimb muscle were injected into rabbits, and the resulting antisera were selectively absorbed to obtain immunological specificity. Cytotoxicity and immunohistochemical assays were used to test this antiserum. Absorption with embryonic or adult chick heart, brain, retina, liver, erythrocytes, or skeletal muscle fibroblasts failed to remove all reactivity of Anti-M-24 for myogenic cells at all stages of development. After absorption with embryonic myotubes, however, Anti-M-24 no longer reacted with differentiated myofibers, but did react with prefusion myoblasts. The myoblast surface antigens detected with Anti-M-24 are components of the muscle cell membrane: (a) these macromolecules are free to diffuse laterally within the myoblast membrane; (b) Anti-M-24, in the presence of complement, induced lysis of the muscle cell membrane; and (c) intact monolayers of viable myoblasts completely absorbed reactivity of Anti-M-24 for myoblasts. These antigens are not loosely adsorbed culture medium components or an artifact of tissue culture because: (a) absorption of Anti-M-24 with homogenized embryonic muscle removed all antibodies to cultured myoblasts; (b) Anti-M-24 reacted with myoblast surfaces in vivo; and (c) absorption of Anti-M-24 with culture media did not affect the titer of this antiserum for myoblasts. We conclude that myogenic cells at all stages of development possess externally exposed antigens which are undetected on other embryonic and adult chick tissues. In addition, myoblasts exhibit surface antigenic determinants that are either masked, absent, or present in very low concentrations on skeletal muscle fibroblasts, embryonic myotubes, or adult myofibers. These antigens are free to diffuse laterally within the myoblast membrane and may be modulated in response to appropriate environmental cues during myodifferentiation.  相似文献   

4.
Laminin-2 is a component of skeletal and cardiac basal lamina expressed in normal mouse and human. Laminin alpha2 chain (LAMA2), however, is absent from muscles of some congenital muscular dystrophy patients and the dystrophia muscularis (dy/dy) mouse model. LAMA2 restoration was investigated following cell transplantation in vivo in dy/dy mouse. Allogeneic primary muscle cell cultures expressing the beta- galactosidase transgene under control of a muscular promoter, or histocompatible primary muscle cell cultures, were transplanted into dy/dy mouse muscles. FK506 immunosuppression was used in noncompatible models. All transplanted animals expressed LAMA2 in these immunologically-controlled models, and the degrees of LAMA2 restoration were shown to depend on the age of the animal at transplantation, on muscle pretreatment, and on duration time after transplantation in some cases. LAMA2 did not always colocalize with new or hybrid muscle fibers formed by the fusion of donor myoblasts. LAMA2 deposition around muscle fibers was often segmental and seemed to radiate from the center to the periphery of the injection site. Allogeneic conditionally immortalized pure myogenic cells expressing the beta-galactosidase transgene were characterized in vitro and in vivo. When injected into FK506- immunosuppressed dy/dy mice, these cells formed new or hybrid muscle fibers but essentially did not express LAMA2 in vivo. These data show that partial LAMA2 restoration is achieved in LAMA2-deficient dy/dy mouse by primary muscle cell culture transplantation. However, not all myoblasts, or myoblasts alone, or the muscle fibers they form are capable of LAMA2 secretion and deposition in vivo.  相似文献   

5.
Myoblast transplantation (MT) is a potential therapeutic approach for several muscular dystrophies. A major limiting factor is that only a low percentage of the transplanted myoblasts survives the procedure. Recent advances regarding how and when the myoblasts die indicate that events preceding actual tissue implantation and during the first days after the transplantation are crucial. Myoseverin, a recently identified tri-substituted purine, was shown to induce in vitro the fission of multinucleated myotubes and affect the expression of a variety of growth factors, and immunomodulation, extracellular matrix-remodeling, and stress response genes. Since the effects of myoseverin are consistent with the activation of pathways involved in wound healing and tissue regeneration, we have investigated whether pretreatment and co-injection of myoblasts with Tubulyzine (microtubule lysing triazine), an optimized myoseverin-like molecule recently identified from a triazine library, could reduce myoblast cell death following their transplantation and consequently improves the success of myoblast transplantation. In vitro, using annexin-V labeling, we showed that Tubulyzine (5 microM) prevents normal myoblasts from apoptosis induced by staurosporine (1 microM). In vivo, the pretreatment and co-injection of immortal and normal myoblasts with Tubulyzine reduced significantly cell death (assessed by the radio-labeled thymidine of donor DNA) and increased survival of myoblasts transplanted in Tibialis anterior (TA) muscles of mdx mice, thus giving rise to more hybrid myofibers compared to transplanted untreated cells. Our results suggest that Tubulyzine can be used as an in vivo survival factor to improve the myoblast-mediated gene transfer approach.  相似文献   

6.
7.
Although myoblast transplantation in patients with ischemic heart failure results in a significant improvement of cardiac function, subsequent studies have consistently shown the myotubes formation in the absence of electromechanical coupling with the neighboring host myocardium, accompanied with the short-term release of paracrine effectors from implanted cells. One major pitfall of using myoblasts is that transplanted cells do not differentiate into cardiomyocytes, which may cause the inherent proarrhythmogenic events. Therefore, whether a discrete subpopulation in heterogeneous muscle-cell cultures is responsible for substantial cardiovascular regeneration has yet to be investigated. We describe here the isolation of progenitor cells from human skeletal muscle. These cells proliferated as non-adherent myospheres in suspension and displayed early embryonic factors and mesenchymal cell-like characteristics. Flow cytometric analyses demonstrated that CD56/N-CAM/Leu-19, a neural cell adhesion molecule abundantly present in myoblasts, was absent in myospheres but was expressed in an adherent cell population containing myogenic precursors. Myosphere-derived progenitor cells (MDPCs) differentiated in culture to produce cardiac, smooth muscle, and endothelial cells. Transplantation of MDPCs into ischemic hearts in NOD/scid mice promoted angiogenesis with substantial cardiovascular regeneration. Our results provide a foundation to further study the cell and biological function of human MDPCs which may have potential therapeutic implications.  相似文献   

8.
Skeletal muscle repair occurs through a programmed series of events including myogenic precursor activation, myoblast proliferation, and differentiation into new myofibers. We previously identified a role for Stem cell antigen-1 (Sca-1) in myoblast proliferation and differentiation in vitro. We demonstrated that blocking Sca-1 expression resulted in sustained myoblast cell division. Others have since demonstrated that Sca-1-null myoblasts display a similar phenotype when cultured ex vivo. To test the importance of Sca-1 during myogenesis in vivo, we employed a myonecrotic injury model in Sca-1(-/-) and Sca-1(+/+) mice. Our results demonstrate that Sca-1(-/-) myoblasts exhibit a hyperproliferative response consisting of prolonged and accelerated cell division in response to injury. This leads to delayed myogenic differentiation and muscle repair. These data provide the first in vivo evidence for Sca-1 as a regulator of myoblast proliferation during muscle regeneration. These studies also suggest that the balance between myogenic precursor proliferation and differentiation is critical to normal muscle repair.  相似文献   

9.
Successful regeneration of damaged striated muscle in adult mice is dependent on the regeneration of newly differentiated myofibers from proliferating satellite cells and inhibition of scar tissue formation by fibroblasts. As with most tissues, the ability of skeletal muscle to regenerate decreases in older animals. In this study, we have analysed soluble extracts from intact and regenerating skeletal muscle from mice of different ages for their ability to affect avian myogenesis in tissue culture. We were interested in determining whether an age-dependent difference could be detected with this tissue culture bioassay system. Total cell proliferation in the cultures, measured by [3H]thymidine incorporation was increased equally by muscle extracts from both young and older mice but the resulting cell populations differed in proportion of cell types. The ratio of myoblasts to fibroblasts was significantly greater in cultures exposed to extracts from younger mouse muscle as compared with cultures exposed to extracts from older animals. This age-related activity was found to reside in a low molecular weight (MW) (greater than 12 kD) component of the extract. This fraction had dissimilar effects on myoblasts and fibroblasts. Relative to saline controls, myoblast proliferation was increased and fibroblast proliferation decreased. The low MW fraction from younger mouse muscle extracts stimulated myogenic cell proliferation and myotube formation to a greater extent than the similar fraction prepared from older mouse muscle. Conversely, younger mouse muscle fractions had significantly greater inhibitory activity against fibroblast proliferation than did older mouse muscle fractions.  相似文献   

10.
Following damage to skeletal muscle, satellite cells become activated, migrate towards the injured area, proliferate, and fuse with each other to form myotubes which finally mature into myofibers. We tested a new approach to muscle regeneration by incorporating myoblasts, with or without the exogenous growth factors bFGF or HGF, into three-dimensional gels of reconstituted basement membrane (matrigel). In vitro, bFGF and HGF induced C2C12 myoblast proliferation and migration and were synergistic when used together. In vivo, C2C12 or primary i28 myoblasts were injected subcutaneously together with matrigel and growth factors in the flanks of nude mice. The inclusion of either bFGF or HGF increased the vascularization of the gels. Gels supplemented with bFGF showed myogenesis accompanied by massive mesenchymal cell recruitment and poor organization of the fascicles. Samples containing HGF showed delayed differentiation with respect to controls or bFGF, with increased myoblast proliferation and a significantly higher numbers of cells in myotubes at later time points. HGF samples showed limited mesenchymal cell infiltration and relatively good organization of fascicles. The use of both bFGF and HGF together showed increased numbers of nuclei in myotubes, but with bFGF-mediated fibroblast recruitment dominating. These studies suggest that an appropriate combination of basement membrane components and growth factors could represent a possible approach to enhance survival dispersion, proliferation, and differentiation of myogenic cells during muscle regeneration and/or myoblast transplantation. This model will help develop cell therapy of muscle diseases and open the future to gene therapy approaches.  相似文献   

11.
12.
Transplantation of muscle precursor cells is of therapeutic interest for focal skeletal muscular diseases. However, major limitations of cell transplantation are the poor survival, expansion and migration of the injected cells. The massive and early death of transplanted myoblasts is not fully understood although several mechanisms have been suggested. Various attempts have been made to improve their survival or migration. Taking into account that muscle regeneration is associated with the presence of macrophages, which are helpful in repairing the muscle by both cleansing the debris and deliver trophic cues to myoblasts in a sequential way, we attempted in the present work to improve myoblast transplantation by coinjecting macrophages. The present data showed that in the 5 days following the transplantation, macrophages efficiently improved: i) myoblast survival by limiting their massive death, ii) myoblast expansion within the tissue and iii) myoblast migration in the dystrophic muscle. This was confirmed by in vitro analyses showing that macrophages stimulated myoblast adhesion and migration. As a result, myoblast contribution to regenerating host myofibres was increased by macrophages one month after transplantation. Altogether, these data demonstrate that macrophages are beneficial during the early steps of myoblast transplantation into skeletal muscle, showing that coinjecting these stromal cells may be used as a helper to improve the efficiency of parenchymal cell engraftment.  相似文献   

13.
Morphology and functional capacity of homotopically transplanted extensor digitorum longus muscles (EDL) of adult SCID mice that received 1 × 106 myoblasts [stably transfected to express nuclear localizing β-galactosidase under the control of the myosin light-chain 3F promoter/enhancer] 2 days posttransplantation were evaluated 9 weeks after transplantation, to determine whether the injection of exogenous myoblasts had an effect on muscle regeneration. Regenerated muscles that received exogenous myoblasts were compared to similarly transplanted muscles that received (a) no further treatment, or (b) sham injection of the vehicle (without myoblasts) and to unoperated EDL. Nine weeks after myoblast transfer, myofibers containing donor-derived nuclei could be identified after staining with X-gal solution. Judging from its size and poor functional performance compared to muscles subjected to transplantation only, sham injection provided a secondary trauma to the regenerating muscle from which it failed to fully recover. In comparison to the sham-injected muscle, the myoblast-injected muscles weighed 61% more and had 50% more myofibers and 82% more cross-sectional area occupied by myofibers at the muscles' widest girths. Their absolute twitch and tetanic tensions were threefold and twofold greater, respectively, and their specific twitch and tetanic tensions were 71% and 50% greater, respectively, than those of sham-injected muscles. In many parameters, the regenerating muscle subjected to myoblast transfer equaled or exceeded those of muscles that were transplanted only received only one trauma). Absolute twitch and tetanic tensions were 73% and 65% greater, respectively, and specific twitch tensions of the muscles receiving myoblasts were 50% greater than forces generated by muscles subjected to whole-muscle transplantation only. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 185–198, 1997  相似文献   

14.
TE (tissue engineering) of skeletal muscle is a promising method to reconstruct loss of muscle tissue. This study evaluates MSCs (mesenchymal stem cells) as new cell source for this application. As a new approach to differentiate the MSCs towards the myogenic lineage, co‐cultivation with primary myoblasts has been developed and the myogenic potential of GFP (green fluorescent protein)‐transduced rat MSC co‐cultured with primary rat myoblasts was assessed by ICC (immunocytochemistry). Myogenic potential of MSC was analysed by ICC, FACS and qPCR (quantitative PCR). MSC—myoblast fusion phenomena leading to hybrid myotubes were evaluated using a novel method to evaluate myotube fusion ratios based on phase contrast and fluorescence microscopy. Furthermore, MSC constitutively expressed the myogenic markers MEF2 (myogenic enhancer factor 2) and α‐sarcomeric actin, and MEF2 expression was up‐regulated upon co‐cultivation with primary myoblasts and the addition of myogenic medium supplements. Significantly higher numbers of MSC nuclei were involved in myotube formations when bFGF (basic fibroblast growth factor) and dexamethasone were added to co‐cultures. In summary, we have determined optimal co‐culture conditions for MSC myogenic differentiation up to myotube formations as a promising step towards applicability of MSC as a cell source for skeletal muscle TE as well as other muscle cell‐based therapies.  相似文献   

15.
The role of tumor necrosis factor-alpha (TNF-alpha), an important mediator of the inflammatory response after injury, was investigated in regenerating skeletal muscle. The pattern of expression of TNF-alpha during muscle regeneration was examined by immunohistochemistry in tissue sections of crush-injured or transplanted muscle autografts and in primary cultures of adult skeletal muscle. TNF-alpha was highly expressed in injured myofibers, inflammatory cells, endothelial cells, fibroblasts, and mast cells. Myoblasts and myotubes also expressed TNF-alpha in primary muscle cultures and tissue sections. The essential role of TNF-alpha and its homologue lymphotoxin-alpha (LT-alpha) during muscle regeneration was assessed by basic histology in TNF-alpha(-/-) and TNF-alpha(-/-)/LT-alpha(-/-) mice. No difference was apparent in the onset or pattern of muscle regeneration (i.e., inflammatory response, activation and fusion of myoblasts) between the two strains of null mice or between nulls and normal control mice. However, both strains of null mice appeared more prone to bystander damage of host muscle and regeneration distant from the site of injury/transplantation. Although expression of TNF-alpha may play an important role in muscle regeneration, the studies in the null mice show that redundancy within the cytokine system (or some other response) can effectively compensate for the absence of TNF-alpha in vivo.  相似文献   

16.
Myoblast transplantation has been extensively studied as a gene complementation approach for genetic diseases such as Duchenne Muscular Dystrophy. This approach has been found capable of delivering dystrophin, the product missing in Duchenne Muscular Dystrophy muscle, and leading to an increase of strength in the dystrophic muscle. This approach, however, has been hindered by numerous limitations, including immunological problems, and low spread and poor survival of the injected myoblasts. We have investigated whether antiinflammatory treatment and use of different populations of skeletal muscle–derived cells may circumvent the poor survival of the injected myoblasts after implantation. We have observed that different populations of muscle-derived cells can be isolated from skeletal muscle based on their desmin immunoreactivity and differentiation capacity. Moreover, these cells acted differently when injected into muscle: 95% of the injected cells in some populations died within 48 h, while others richer in desmin-positive cells survived entirely. Since pure myoblasts obtained from isolated myofibers and myoblast cell lines also displayed a poor survival rate of the injected cells, we have concluded that the differential survival of the populations of muscle-derived cells is not only attributable to their content in desmin-positive cells. We have observed that the origin of the myogenic cells may influence their survival in the injected muscle. Finally, we have observed that myoblasts genetically engineered to express an inhibitor of the inflammatory cytokine, IL-1, can improve the survival rate of the injected myoblasts. Our results suggest that selection of specific muscle-derived cell populations or the control of inflammation can be used as an approach to improve cell survival after both myoblast transplantation and the myoblast-mediated ex vivo gene transfer approach.  相似文献   

17.
Skeletal myoblasts from fetal muscle respond adversely to fibronectin and laminin substrata: when primary mouse skeletal myoblasts are plated onto laminin, more myosin and desmin-positive myoblasts (myo+ cells) develop than on plates coated with fibronectin or collagen. In clonal cultures virtually all cells differentiate into postmitotic, fusion-capable myo + myoblasts on laminin after 3 days. In contrast, on fibronectin, the majority of the cells becomes myosin- and desmin-negative, partially due to proliferation of undifferentiated myoblast precursor cells, partially due to dedifferentiation or modulation of myoblasts into fibroblast-like myo- cells. Loss of the myogenic phenotype on fibronectin was also observed in cloned mouse myoblasts and in cultures of a differentiating mouse satellite cell line, MM14Dy, confirming that the appearance of desmin-negative cells is a result of myoblast modulation and not due simply to overgrowth by muscle fibroblasts. In the light of other effects of laminin on myoblasts, such as the stimulation of migration, differentiation and proliferation, our findings are consistent with the notion that laminin and fibronectin may be counteracting factors in the control of muscle differentiation.  相似文献   

18.
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors.However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.  相似文献   

19.
Fusion of mononucleated myoblasts to form multinucleated myofibers is an essential phase of skeletal myogenesis, which occurs during muscle development as well as during postnatal life for muscle growth, turnover, and regeneration. Many cell adhesion proteins, including integrins, have been shown to be important for myoblast fusion in vertebrates, and recently focal adhesion kinase (FAK), has been proposed as a key mediator of myoblast fusion. Here we focused on the possible role of PKC, the PKC isoform predominantly expressed in skeletal muscle, in myoblast fusion. We found that the expression of PKC is strongly up-regulated following freeze injury-induced muscle regeneration, as well as during in vitro differentiation of satellite cells (SCs; the muscle stem cells). Using both PKC knockout and muscle-specific PKC dominant-negative mutant mouse models, we observed delayed body and muscle fiber growth during the first weeks of postnatal life, when compared with wild-type (WT) mice. We also found that myofiber formation, during muscle regeneration after freeze injury, was markedly impaired in PKC mutant mice, as compared with WT. This phenotype was associated with reduced expression of the myogenic differentiation program executor, myogenin, but not with that of the SC marker Pax7. Indeed in vitro differentiation of primary muscle-derived SCs from PKC mutants resulted in the formation of thinner myotubes with reduced numbers of myonuclei and reduced fusion rate, when compared with WT cells. These effects were associated to reduced expression of the profusion genes caveolin-3 and β1D integrin and to reduced activation/phosphorylation of their up-stream regulator FAK. Indeed the exogenous expression of a constitutively active mutant form of PKC in muscle cells induced FAK phosphorylation. Moreover pharmacologically mediated full inhibition of FAK activity led to similar fusion defects in both WT and PKC-null myoblasts. We thus propose that PKC signaling regulates myoblast fusion by regulating, at least in part, FAK activity, essential for profusion gene expression.  相似文献   

20.
Patterning of fast and slow muscle fibres in limbs is regulated by signals from non-muscle cells. Myoblast lineage has, however, also been implicated in fibre type patterning. Here we test a founder cell hypothesis for the role of myoblast lineage, by implanting characterized fast and slow mouse myoblast clones into chick limb buds. In culture, late foetal mouse myoblast clones are committed to a probability (range 0-0.92) of slow myosin heavy chain (MyHC) expression. In contrast, when implanted into chick limbs, fast mouse myoblast clones express myosin characteristic of their new environment, without fusion to chick muscle cells and in the absence of innervation. Therefore, local signals exist within the chick limb bud during primary myogenesis that can override intrinsic commitment of at least some myoblasts, and induce slow MyHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号