首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth and development of a population of Potamogeton distinctus were studied over one vegetation period.
The morphological structure of the species is described. Maximum development of the size of shoot complexes occurred in August (up to 12 g dry weight/shoot complex). The plant exhibits a regular growth cycle with continuous horizontal and vertical growth that is illustrated by the development of horizontal shoots, vertical shoots and different plant parts. The lower horizontal shoots allow an extension up to 1.8 m from the point of germination. Before the rainy season in June the 1st to 5th generations of vertical shoots mainly contribute to the standing crop of the plants' stand, and after the rainy season the 5th to 9th generation shoots are predominant. Floating leaves make up the main proportion of biomass during the whole growth cycle. Almost 100% of the shoot complexes were found flowering and producing numerous seeds. Up to 16% of the standing crop are allocated to inflorescence and seeds in August. Turions failed to form that year because of rapid desiccation of the habitat. The observed average lifetime of a vertical shoot is appr. 65 days, the estimated turnover rate is between 2.15 and 2.27.  相似文献   

2.
几种狼尾草属观赏植物在北京地区的生长特性   总被引:3,自引:0,他引:3  
在北京地区气候条件下评价了狼尾草‘紫光’(Pennisetum alopecuroides(L.)Spreng‘Ziguang’)、绒毛狼尾草(Pennisetum setaceum(Forssk.)Chiov.)、羽绒狼尾草(Pennisetum villosum R.Br.ex Fresen)、狼尾草‘小兔子’(Pennisetum alopecuroides Desv.ex Ham‘Little Bunny’)和东方狼尾草(Pennisetum orientale Willd.ex Rich.)的田间生长状况、越冬存活率、根系生物量分布和繁殖特性。结果表明,这5种植物在北京地区气候条件下,能正常发芽、生长、抽穗、开花和结实。其中狼尾草‘紫光’、绒毛狼尾草植株高大,分蘖旺盛,盛花期花序高度达135CH和156cm,植株茎数达156和217个/株,地上生物量达608.7和535.3g/株,根系密集分布空间在距地表10~40cm,距茎秆0~30cm。狼尾草‘小兔子’和东方狼尾草株型矮小,株高为40cm,植株茎数分别为162和108个/株,地上生物量分别为124.2和39.8g/株,根系密集分布空间为距地表10~30cm,距茎秆15~30cm。羽绒狼尾草的茎秆半匍匐生长,分蘖能力强,盛花期花序高为79cm,植株茎数为389个/株,地上生物量高达619.9g/株,根系密集区为距地表0~30am,距茎秆0~30cm。狼尾草‘紫光’、狼尾草‘小兔子’和东方狼尾草在北京地区能安全越冬,成活率为100%,羽绒狼尾草和绒毛狼尾草在自然条件下不能越冬,成活率为0。5种狼尾草都可以播种和分株的方式扩繁。  相似文献   

3.
Bélanger  G.  Richards  J.E. 《Plant and Soil》2000,219(1-2):177-185
The dynamics of biomass and N accumulation following defoliation of alfalfa and the application of N fertilization has rarely been studied under field conditions, particularly in the seeding year. Our objectives were to determine the effect of N fertilization on the dynamics of biomass and N accumulation during the first regrowth of alfalfa in the seeding year, and to determine if a model describing critical N concentration developed for established stands could be used in the seeding year. In two separate experiments conducted in 1992 and 1993, the biomass and N accumulation of alfalfa grown with three N rates (0, 40 and 80 kg N ha-1) were determined weekly. Maximum shoot growth was reached with 40 kg N ha-1 in 1992, and maximum shoot growth was not reached with the highest N fertilization rate in 1993. Nitrogen fixation, root N reserves and soil inorganic N uptake when no N was applied were, therefore, not sufficient to ensure non-limiting N conditions, particularly when growth rates were the highest between 14 to 21 d after defoliation. Nitrogen fertilization increased shoot biomass accumulation in the first 21 d of regrowth, biomass partitioning to the shoots and shoot and taproot N concentrations. The model parameters of critical N concentration developed by Lemaire et al. (1985) for established stands of alfalfa were not adequate in the seeding year. The N requirements per unit of shoot biomass produced are greater in the seeding year than on established stands, and this was attributed to a greater proportion of leaves in the seeding year.  相似文献   

4.
A field incubator based on a closed flow system was applied for primary productivity measurements in situ. The seasonal development of epiphytes showed a pronounced productivity maximum in May (610 mg C m−2 Phragmites stand d−1) and a maximum chlorophyll a content of 414 mg m−2 Phragmites stand. Substratum limitation was indicated during the spring maximum. Primary productivity and biomass decreased to low values in late summer, mainly due to shading from the aerial shoots. Significant quantitative heterogeneities in epiphyte biomass occurred over a few decimeter of Phragmites stem. Productivity and biomass were higher on old stems than on new ones throughout the growth period. The annual epiphyte production (23,7 g C m−2 Phragmites stand) was mainly a result of the spring maximum. The fact that 64% was produced on old stems emphasizes the importance of the highly variable degree to which these may be destroyed. The host plant phenology appears from this investigation to be a key factor affecting epiphyte growth in the emergent vegetation determined by (1) the amount of available substratum and (2) the light penetration through the canopy.  相似文献   

5.
Nearly all published rates of secondary forest (SF) regrowth for Amazonia are inferred from chronosequences. We examined SF regrowth on abandoned pastures over a 4‐year period to determine if measured rates of forest recovery differ from chronosequence predictions. We studied the emergence, development and death of over 1300 stems in 10 SFs representing three age classes (<1–5, 6–10 and 11–14 years old). Mean tree biomass accumulation in both the <1–5 and 6–10 years old (4.4 and 5.7 Mg ha−1 yr−1, respectively) abandoned pastures was lower than predicted and deviated significantly (57% and 41%) from rates estimated from the chronosequence. The older SFs, with a mean growth rate of 9.9 Mg ha−1 yr−1 followed the rate predicted by the chronosequence. Understocking was the primary cause of low biomass recovery rates in the youngest forests; although the youngest stands had a diameter at breast height increment three times the oldest stands, the youngest stands lacked sufficient density to cumulatively produce high biomass accumulation rates. Four years of measurement indicated that the youngest stands had developed 59% of the stems measured in the older stands during the same time period. The 6–10‐year‐old stands were rapidly self‐thinning and approached stem density values measured in the same aged stands at the onset of the study. Mortality was high for all stands, with 54% of the original stems remaining after 4 years in intermediate‐aged stands. The forests were dominated by the tree Vismia, which represented 55–66% of the biomass in all stands. The Vismia share of the biomass was decreasing over time, with other genera replacing the pioneer. Our measured rates of regrowth indicate that generalized estimates of forest regrowth through chronosequence studies will overestimate forest regrowth for the youngest forests that were under land use for longer time‐periods before abandonment. Certified Emission Reductions under the Clean Development Mechanism of the Kyoto protocol should consider these results when predicting and compensating for carbon sequestered under natural forest management.  相似文献   

6.
A long-term implant experiment with four clones of Festuca rubra was performed to identify fine-scale spatial variation in a competitive environment within a grassland sward of natural composition and density variation. Total above-ground biomass and shoot counts of all species were recorded in 10×10 cm neighbourhoods of each implant, and their effect on the growth response of the implant was tested. Two types of response were recorded: (1) shoot sizes and vertical shoot growth dynamics, and (2) horizontal space encroachment by means of new shoot natality, mortality and their mode of formation (intravaginal or extravaginal). The vertical growth of individual shoots showed the strongest response to neighbourhood composition; it responded to the overall aboveground biomass of the neighbours, but not to their species composition. The responses in parameters of horizontal growth of individuals (natality, mortality, proportion of extravaginal shoots) were much weaker and not consistent over the observation period; however, both total biomass of the neighbours and species composition affected the response of the target plants.
The overall response was rather weak in spite of a tenfold variation in neighbouring density and a thirtyfold variation in neighbouring biomass. This indicates that the response to this variation is rather flat under field conditions, either due to high overall values of density or due to interactions with below-ground processes. Consequently, though the plant is capable of remarkable plastic responses in both vertical growth and morphogenetic change, under field conditions this capacity for plastic response is expressed only to a limited degree.  相似文献   

7.
Predictions from a mechanical model for hollow vertical stems are tested against morphometric and mechanical studies of the vertical stems of Equisetum hyemale. The model predicts 1) that the wall thickness of hollow internodes must be at least 15% of the external radius of shoots, 2) that the elastic modulus of stems is quantitatively related to the ratio of apoplast (cell walls) to symplast (cytoplasm) areas in transverse sections through stems, and that (3) hollow stems are designed to sustain an additional and significant proportion of their own weight. The “safety factors” predicted for a hollow vertical stem are used to examine two adaptationist explanations for hollow stems: 1) “economy in design,” which argues that natural selection will favor a reduction in the metabolic cost in constructing an organ, and 2) “mechanical design,” which argues that stems are designed to maximize their mechanical stability during vertical growth. Evidence from E. hyemale indicates that 1) there is a developmental limit to the maximum allotment of biomass invested in the construction of stems, 2) as stem height increases, morphometric adjustments in internodal wall thickness occur which converge on predicted safety limits, and 3) the elastic modulus of stems changes as a function of the ratio of apoplast to symplast areas seen in transverse sections through shoots. Biomechanical and developmental evidence and the allometry of E. hyemale stems are consistent with the view that stems are designed for safety and are inconsistent with some predictions based on the economy in design.  相似文献   

8.
Several factors, such as environmental conditions, pruning, and plant growth regulators, affect the flowering of bougainvillea. However, information on the effect of shoot bending on growth and flowering of bougainvillea is scarce. In the natural environment, most of the bougainvillea flowering shoots are inclining whereas vertical shoots are not flowering shoots. Bougainvillea shoots are artificially grown vertically, horizontally and at an inclined orientation, to investigate the effect of these orientations on plant growth and the development of flower buds. The results of this indicate an effect of shoot bending on the growth rate of bougainvillea and the rate of flower bud formation. Additionally, our results suggest that vertical shoots have a higher growth rate, more prolific vegetation growth, and longer plastochrons (which are the intervals between the initiations of successive leaves). In contrast, horizontal and inclined shoots exhibited slower growth, a shorter time to reach flowering, and more flower buds. Inclined shoots had a higher endogenous ACC (1-aminocyclopropene-1-carboxylate) content and produced more ethylene than either horizontal or vertical shoots, indicating that more ACC in the inclined shoot is converted into ethylene, and the higher ethylene concentration in the inclined shoot causes it to mature earlier and flower sooner.  相似文献   

9.
Abstract. This study attempts to show the dynamics of the canopy structure of the Mediterranean pioneer shrub Lavandula stoechas after man-made perturbation (i.e. grazing). The development of the vertical structure of the shrub was studied by harvesting the canopy of plants of 2–6 yr old in horizontal layers. The supportive biomass of the canopy was concentrated near the base at all ages. Leaf biomass was evenly distributed all over the vertical profile in 2- and 3-yr old plants. In 4-yr old plants it presented a maximum near the top of the canopy. For 5-yr old plants a structural transition started with leaf profiles showing a bimodal distribution. Leaf biomass predominated near the base in 6-yr old plants, suggesting that the transition was completed. Three canopy stages in the growth processes of the plant were recognized after the first year of growth: in the first one (from 2 to 3 yr old) both leaf and supportive biomass increased; in the second one (from 3 to 4 yr) leaf biomass remained stable and there was an increase in supportive biomass until the plants reached a ‘mature stage’, in 4-yr old plants; finally, in 5- and 6-yr old plants there was a decrease both in leaf and supportive biomass and plant structure showed evidence of senescence. Early transitions from seedling to 1-yr old plant and from this to 2- to 3-yr old plants were less obvious. The leaf/supportive biomass ratio always decreased with plant age, from 1.88 in seedlings to 0.01 in 6-yr old plants. Biomass density followed the pattern of supportive biomass, with an increase from 1.7 g/dm3 (2-yr old plants) to 2.4 g/dm3 (4-yr old plants). Thereafter, biomass density decreased to 0.6 g/dm3 (6-yr old plants).  相似文献   

10.
Aucuba japonica , an evergreen broad-leaved shrub. Aucuba Japonica var. borealis is widely distributed in heavy snowfall areas in Japan and is covered, shaded and physically pressured by snow for more than four months of the year. On the other hand, var. japonica is widely distributed in light snowfall areas. The sizes of new shoots and leaves were significantly different between the two varieties with different critical shoot sizes for flowering. The average new shoot dry mass of var. borealis was about one third of that of var. japonica. Despite the differences in growing conditions and shoot size, no significant differences were observed in the allometry of their shoot organs between the two varieties. Large new shoots had thicker and longer stems per biomass than small shoots because of their larger pith volume. The large shoots showed higher efficiency of stem growth per invested biomass and had a higher rate of annual height increase than small shoots. When the size of new shoot rapidly increased from year to year, i.e. the plants are growing well, initiation of flowering was postponed and vegetative growth continued. Small new shoots were tolerant of low productivity conditions but traded vertical growth for an increase in matter allocation to leaves. Received 8 July 1999/ Accepted in revised form 1 September 2000  相似文献   

11.
Japanese barberry, Berberis thunbergii DC., has become a prominent exotic species in deciduous forests throughout the eastern and midwestern US. Populations range from small plants occurring at low densities to dense, impenetrable thickets of plants with up to 40 stems/individual. A study was undertaken at Morristown National Historical Park in New Jersey to document plant densities, plant size, recruitment through vegetative processes of new shoot initiation and clonal spread and recruitment from seedling establishment, and mortality of stems and plants. Nearly 2000 shoots on 370 plants were individually marked and followed for two growing seasons, and over 1000 seedlings were also individually marked and followed. Populations vary much more in total shoots/area than they do in plant individuals/area, or in mean plant size (shoots/plant), as even the sparse populations have a few large individuals. Shoot mortality is less than new shoot initiation, but most plants do not change in size or change by small numbers of stems. However, the number of new shoots per plant increases as plant size increases. Once plants have three stems, they suffer little or no mortality. Seedling establishment is proportional to the density of shoots, so that as plants grow in size, local recruitment from seed increases. Large numbers of seedlings, and a survival rate of 10%, combine to make seedling recruitment a major component of population increase. The combination of multiple forms of vegetative and seed-based population growth, and the very low rates of plant mortality due to the multi-stemmed growth form explains the ability of this invasive species to rapidly produce dense, persistent populations.  相似文献   

12.
Modern concepts of plant tolerance to herbivory are primarily based on studies of short‐term severe damage, whereas the effects of minor chronic damage to long‐lived woody plants, corresponding to background herbivory (2–15% annual loss of foliar biomass in boreal and temperate forests), remain poorly understood. In our experiment, the annual removal of 2, 4, 8 and 16% of the leaf area from naturally growing mountain birch Betula pubescens subsp. czerepanovii saplings during a seven‐year period resulted in a pronounced reduction of plant vertical growth (–30, –34, –45 and –78%, respectively). Leaf size decreased first (already after one year of the 16% treatment), resulting in the reduction of the total leaf area. This effect was followed by a considerable decrease in the length of long shoots in all treatments. Leaf number on the plant was maintained for a longer time, being reduced by the end of the experiment in 16% treatment only; no changes in specific leaf area or chlorophyll fluorescence were observed in either of the treatments. This pattern may indicate that the plant reallocates resources from the growth of the woody parts to the maintenance of the photosynthetic area, and can be seen as a strategy of tolerance to minor herbivory, whereas compensatory responses typical of severe herbivory (increased photosynthesis rates and shoot regrowth) have not been detected. The predicted 2–5% increase in background herbivory due to climate warming can potentially produce previously unrecognised negative impacts on tree growth. We conclude that in the long term, background herbivory is likely to impose stronger effects on the growth of woody plants than short‐term devastating outbreaks of defoliators, thus contributing more to the development of plant evolutionary adaptations to herbivory than severe but episodic bouts of damage.  相似文献   

13.
Life cycle of Egeria densa planch., an aquatic plant naturalized in Japan   总被引:1,自引:0,他引:1  
The ecophysiological life cycle of Egeria densa Planch., in a lotic irrigation ditch was evaluated. Phenological and quantitative measurements were made from August 1984 to July 1985. Lateral shoots with roots developed and elongated to the surface of the water when the bottom-water temperature increased above c. 15°C. Root crown developed simultaneously as the plant biomass increased. Dense shoot crown was formed under the water surface after the shoot reached the water surface. Plant biomass had two maxima in August and December-January. The bimodal curve in plant biomass was caused by the difference of growth attributed to the winter-type and summer-type plants. Relative growth rate, in length, of summer-type plants occurred at an optimum temperature of 20.7°C in culture. The seasonal activity of photosynthesis and respiration was measured in March, August and December. The optimum temperature of net photosynthesis of the summer-type plants reached a high 35°C similar to that of the C4 plant. The compensation for light intensity at 35°C was 340 lux. Each photosynthesis-temperature curve suggested that Egeria had the ability to adapt to the seasonal changes in temperature in the natural habitat. The maximum starch concentrations reached 25.4% in the leaf and 22.6% in the stem in December. The shortage in the balance of organic matter for overwintering was found to be maintained by stored starch in the leaf and the stem.  相似文献   

14.
Potamogeton illinoensis Morong is a major submerged weed invading irrigation channels in the Lower Valley of the Río Negro, near Viedma, Argentina. Studies on morphology and growth characteristics of this species were conducted in an outdoor tank from August 1993 to May 1994 with the objective of increasing the knowledge of its ecology order to adjust control measures. The maximum aboveground biomass was reached in April, with a subsequent decrease to May when the water supply was cut off. Belowground biomass comprised two kinds of rhizomes. The first group (Rhizomes I) was produced from the beginning of the annual cycle causing both lateral shoots and new rhizomes I production. The second group (Rhizomes II) was distinguished as an enlargement of the extremes of rhizomes I from mid-November, producing only short overwintering sprouts. Plant parts production (DW in g/plant) in the first cycle was: 27.2 g leaves; 11.9 g stems; 17.4 g rhizomes I and 8.1 g rhizomes II. Vegetative propagation appeared to be an important survival strategy in this species. During the 3–4 month period without water only rhizomes with underground overwintering sprouts survive in the dry sediment.  相似文献   

15.
In this paper, we develop a technique to model the spatial distribution of shoots along vertical and horizontal dimensions of a plant community. We use it to simulate the growth of a tropical savanna near the city of Barinas, Venezuela, to explore the responses of the peak biomass of a plant community to a range of 10-50% reduction of rainfall. We selected three dominant grass species: Elyonurus adustus, Leptocoryphium lanatum, and Andropogon semiberbis in a 4 × 7 m study plot. We estimate parameters values from data measured in the field. The number of shoots for each plant is obtained according to soil water availability and distributed vertically by 10 cm levels using a transition matrix. Convolution allows calculation of leaf area index for each cell and vertical level, which is then used to calculate light attenuation and thus the proportion of shaded shoots in each cell and level. With this information, maximum evapotranspiration is determined to calculate soil moisture using daily rain time series. Biomass is calculated for all species based on shoot biomass measured in the field and fire is simulated by removing a fraction of the shoots segments of all species. Modeled biomass fits reasonably well to field data.The model predicts significant differences in the response of each species to drought. A. semiberbis was the most drought resistant of the three species, whereas L. lanatum was the least, and E. adustus was intermediate, in agreement with observations in the literature. Our model suggests that drought resistance increases with the biomass/transpiration ratio for the species considered.  相似文献   

16.
A dynamic model of regrowth in Typha angustifolia after cutting shoots above the water surface was formulated by characterizing the phenology and mobilization of resources from below-ground to above-ground organs after the cutting. The model parameters were determined by two cutting experiments to investigate the different strategies with flowering and non-flowering shoots after cutting in 2001 and by four cutting experiments to elucidate the regrowth characteristics after cutting on different days from June to September in 2002. A difference was evident both for flowering and non-flowering shoots and for each cutting day. From June to August, non-flowering shoots regrew immediately after cutting, but flowering shoots did not. The shoot regrowth height, number of leaves and shoot biomass were higher with the earlier cutting. The model was validated using the below-ground biomass observed in December 2002 and below-ground dynamics observed in 2003. In the low-flowering shoot zone of the stands, in which the percentage of flowering shoots was small (around 10%), the decrease in below-ground biomass became larger from June (20%) to August (60%). Cutting the high-flowering shoot zone (flowering shoots: 78%) in July 2001, just 1 week after peduncle formation, decreased the below-ground biomass by about 50%. In the low-flowering shoot zone, cutting just before senescence is better for decreasing below-ground biomass with a smaller rate of flowering shoots. The difference of below-ground biomass reduction in non-flowering shoots is mainly due to the decrease in downward translocation (DWT) of above-ground material to below-ground organs during senescence, because of the decrease in regrowth biomass. As for flowering shoots, the decrease in the photosynthate transportation from above-ground to below-ground organs and that of DWT are closely related because they cannot grow again within the season.  相似文献   

17.
Aspects of the life cycle of the hydroid Sertularia cupressina were monitored over a period of 2 y using settlement panels. The reproductive period, determined by the presence of acrocysts and larval settlement, was November to January. Recently settled hydroids were more abundant on horizontal upward facing surfaces than on horizontal downward facing or vertical surfaces. The spatial dispersal of settlers was random. S. cupressina was a conspicuous and persistent component of fouling communities developing on both upward facing and vertical panels over 2 y. Following settlement in winter 1979–80, hydrocauli reached their greatest height between November 1980 and April 1981, but fouling and breakage of stems occurred during spring 1981. Regeneration from the tips of broken stems and from hydrorhizae occurred in June and July 1981.  相似文献   

18.
Van de Vijver  C. A. D. M.  Poot  P.  Prins  H. H. T. 《Plant and Soil》1999,214(1-2):173-185
The aim of the present study was to investigate the causes of increased macronutrient concentrations in above-ground post-fire regrowth in an East African savanna (Northern Tanzania). Experiments were set up to discriminate between the following possible causes: (1) increased soil nutrient supply after fire, (2) relocation of nutrients from the roots to the new shoots, (3) rejuvenation and related changes in plant tissue composition and (4) changes in nutrient uptake in relation to above-ground carbon gains. N, P, K, Ca and Mg concentrations in post-burn graminoid vegetation were compared with clipped and with unburned, control vegetation during the post-burn growth season. One month after burning and clipping, nutrient concentrations in live grass shoots in the burned and clipped treatments were significantly higher than in the control. This effect, however, declined in the course of the season and, except for Ca, disappeared three months after onset of the treatments. There were no significant differences in live grass shoot nutrient concentrations between burned and clipped treatments which suggests that the increased nutrient concentration in post-fire regrowth is not due to increased soil nutrient supply via ash deposition. The relatively low input of nutrients through ash deposition, compared to the amount of nutrients released through mineralisation during the first month after burning and to the total nutrient pools, supports this suggestion. There was no difference between burned and unburned vegetation in total root biomass and root nutrient concentrations. Relocation of nutrients from the roots to the new shoots did not, therefore, appear to be a cause of higher post-fire shoot nutrient concentrations. The present study shows that in this relatively nutrient-rich savanna, the increased nutrient concentration in above-ground post-fire regrowth is primarily due to increased leaf:stem ratios, rejuvenation of plant material and the distribution of a similar amount of nutrients over less above-ground biomass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Phenological and quantitative observations on Elodea nuttallii (Planch.) St. John, an exotic aquatic plant in Japan, were made in a shallow pond throughout 1979. Shoot elongation began in spring (late March) when the bottom water temperature became higher than about 10°C. Elongation ceased when the shoot apices reached the pond surface and vigorous branching then occurred. The community formed a dense canopy, with 40–65% of the shoot biomass in the topmost 30-cm water layer during the growing season. Maximum plant biomass (712 g dry wt. m?2) was attained in late July, while the peak root biomass occurred around June, coincident with peak flowering. The anchoring roots and stems eventually died, and after September, the population existed as a floating mat of non-anchored leafy short shoots and decaying old branch stems. This mat sank suddenly to the bottom in December, when water temperatures dropped below approximately 10°C, and overwintered there. The ecological significance of the perennial growth habit and the formation of a floating mat is discussed in terms of the adventive spread of this plant, and an estimation of annual net production and P/B quotient is also made.  相似文献   

20.

Background and aims

The ability of modifying biomass allocation to deal with different environmental stress is an important mechanism for plant population expansion and maintenance in the unstable dune environment where wind erosion persists. However, how biomass is partitioned between horizontal rhizome extension and vertical ramet growth in response to wind erosion has not been fully understood. The objective of this study was to explore how wind erosion affected the relationship between horizontal rhizome extension and vertical ramet growth using a common rhizomatous perennial grass, Phragmites communis.

Methods

We dug 300 cm?×?200 cm, 80 cm deep pits in a garden experiment plot. Clonal fragments of P. communis were planted individually at a depth of 40 cm in these pits for 4 weeks before treatments. Surface sand was gradually removed to the final depth of 0 (control), 10, 20, 30 and 40 cm (maximum sand removal). Ramet emergence time, rhizome-based and tiller-based ramet number, rhizome number and length, biomass of vertically and horizontally oriented structures were monitored at the end of the experiment.

Results

With increasing erosion depth, the proportion of tiller-based ramets (in total number of ramets) increased, whereas that of rhizome-based ramets decreased. With increasing erosion depth, the percentage of vertically oriented structures biomass in total biomass increased significantly, whereas that of horizontally oriented structures biomass decreased.

Conclusions

The changes in biomass allocation (i.e., more allocation in vertical than horizontal biomass) together with a trade-off in tiller-based and rhizome-based ramets may enable P. communis to make better use of the resources in erosion conditions and maximize plant population expansion and maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号