首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Population-based studies have shown that the offspring of diabetic mothers have an increased risk of developing obesity, insulin resistance, type 2 diabetes and hypertension in later life. To investigate mechanism for the high incidence of metabolic diseases in the offspring of diabetic mothers, we focused on the tissue-specific glucocorticoid regulation by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) and studied offspring born to streptozotocin-induced diabetic rats. The body weights of newborn rats from diabetic mothers were heavier than those from control mothers. Offspring born to diabetic mothers demonstrated insulin resistance and mild glucose intolerance after glucose loading at 10 weeks and showed significantly increased 11beta-HSD1 mRNA and enzyme activity in adipose tissue at 12 weeks of age without obvious obesity. Hepatic 11beta-HSD1 mRNA was also elevated. We propose that the 11beta-HSD1 in adipose tissue and liver may play a key role in the development of metabolic syndrome in the offspring of diabetic mothers. Tissue-specific glucocorticoid dysregulation provides a candidate mechanism for the high incidence of metabolic diseases in the offspring of diabetic mothers. Therefore early analyses before apparent obesity are needed to elucidate the molecular mechanisms that may be programmed during the fetal period.  相似文献   

2.
Methionine restriction (MR) limits age-related adiposity in Fischer 344 (F344) rats. To assess the mechanism of adiposity resistance, the effect of MR on adipose tissue (AT) 11beta-hydroxysteroid dehydrogenase-1 (11beta-HSD1) was examined. MR induced 11beta-HSD1 activity in all ATs, correlating with increased tissue corticosterone. However, an inverse relationship between 11beta-HSD1 activity and adipocyte size was observed. Because dietary restriction controls lipogenic and lipolytic rates, MR's effects on lipogenic and lipolytic enzymes were evaluated. MR increased adipose triglyceride lipase and acetyl-coenzyme A carboxylase (ACC) protein levels but induced ACC phosphorylation at serine residues that render the enzyme inactive, suggesting alterations of basal lipolysis and lipogenesis. In contrast, no changes in basal or phosphorylated hormone-sensitive lipase levels were observed. ACC-phosphorylated sites were specific for AMP-activated protein kinase (AMPK); therefore, AMPK activation was evaluated. Significant differences in AMPKalpha protein, phosphorylation, and activity levels were observed only in retroperitoneal fat from MR rats. No differences in protein kinase A phosphorylation and intracellular cAMP levels were detected. In vitro studies revealed increased lipid degradation and a trend toward increased lipid synthesis, suggesting the presence of a futile cycle. In conclusion, MR disrupts the lipogenic/lipolytic balance, contributing importantly to adiposity resistance in F344 rats.  相似文献   

3.
11beta-Hydroxysteroid dehydrogenase type 1 is a homodimer where the carboxyl terminus of one subunit covers the active site of the dimer partner. Based on the crystal structure with CHAPS, the carboxyl terminal tyrosine 280 (Y280) has been postulated to interact with the substrate/inhibitor at the binding pocket of the dimer partner. However, the co-crystal structure with carbenoxolone argues against this role. To clarify and reconcile these findings, here we report our mutagenesis data and demonstrate that Y280 is not involved in substrate binding but rather plays a selective role in inhibitor binding. The involvement of Y280 in inhibitor binding depends on the inhibitor chemical structure. While Y280 is not involved in the binding of carbenoxolone, it is critical for the binding of glycyrrhetinic acid.  相似文献   

4.
A series of 2-adamantylmethyl tetrazoles bearing a quaternary carbon at the 2-position of the adamantane ring (i.e. structure A) have been designed and synthesized as novel, potent, and selective inhibitors of human 11β-HSD1 enzyme. Based on the SAR and the docking experiment, we report for the first time a tetrazole moiety serving as the active pharmacophore for inhibitory activity of 11β-HSD1 enzyme. Optimization of two regions of A, R1 and R2 respectively, was explored with a focus on improving the inhibitory activity (IC50) and the microsomal stability in both human and mouse species. These efforts led to the identification of 26, an orally bioavailable inhibitor of human 11β-HSD1 with a favorable development profile.  相似文献   

5.
A previous disclosure from this lab highlighted the discovery of pyridyl amides as potent 11β-HSD1 inhibitors. In order to build additional novelty and polarity into this chemotype, replacement of the hydrogen-bonding carbonyl (CO) pharmacophore with the bioisosteric sulfonyl (SO2) group was examined. Despite initial comparisons suggesting the corresponding sulfonamides exhibited weaker activity versus their carbonyl counterparts, further optimization was performed in an effort to identify various potent and unique leads for the program. Judicious incorporation of polar moieties resulted in the identification of compounds with enhanced potency and lipophilicity profiles, resulting in leads with superior aqueous solubility and liver microsomal stability.  相似文献   

6.
High throughput screening efforts have identified a novel class of dichloroaniline amide 11β-HSD1 inhibitors. SAR studies initiated from dichloroaniline 4 focused on retaining the potency and selectivity profile of the lead.  相似文献   

7.
8.
Dithiocarbamates (DTCs), important therapeutic and industrial chemicals released in high quantities into the environment, exhibit complex chemical and biological activities. Here, we demonstrate an effect of DTCs on glucocorticoid action due to inhibition of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) type 2, converting cortisol to cortisone in the kidney, but not 11 beta-HSD1, catalyzing the reverse reaction in liver and adipose tissue. Thus, DTCs may locally increase active glucocorticoid concentrations. Preincubation with the DTC thiram abolished 11 beta-HSD2 activity, suggesting irreversible enzyme inhibition. The sulfhydryl protecting reagent dithiothreitol blocked thiram-induced inhibition and NAD+ partially protected 11 beta-HSD2 activity, indicating that DTCs act at the cofactor-binding site. A 3D-model of 11 beta-HSD2 identified Cys90 in the NAD(+)-binding site as a likely target of DTCs, which was supported by a 99% reduced activity of mutant Cys90 to serine. The interference of DTCs with glucocorticoid-mediated responses suggests a cautious approach in the use of DTCs in therapeutic applications and in exposure to sources of DTCs such as cosmetics and agricultural products by pregnant women and others.  相似文献   

9.
This study is concerned with validating the measurement of the plasma half-life of 11alpha-(2)H cortisol in an attempt to accurately assess the in vivo activity of 11beta-HSD2 in man. Oral administration of 5mg of cortisol-(13)C(4),(2)H(1) to a human subject after repeated ingestions of 130mg/day of glycyrrhetinic acid for 5 days resulted in a decrease in the rate constant of the cortisol-(13)C(4),(2)H(1) to cortisone-(13)C(4) conversion, a direct index reflecting 11beta-HSD2 activity. The reduced 11beta-HSD2 activity led to an increase in the elimination half-life of cortisol-(13)C(4),(2)H(1), indicating that the loss of 11alpha-(2)H is a sensitive in vivo means of assessing 11beta-HSD2 activity. A simultaneous oral administration of 3mg each of [1,2,4,19-(13)C(4),11alpha-(2)H]cortisol (cortisol-(13)C(4),(2)H(1)) and 11alpha-(2)H cortisol to another human subject confirmed the bioequivalency of the two labeled cortisols. The information obtained from the kinetic analysis of the 11beta-HSD2-catalyzed conversion of cortisol-(13)C(4),(2)H(1) to cortisone-(13)C(4) indicated that the elimination half-life of 11alpha-(2)H cortisol was a sensitive index of renal 11beta-HSD2 activity. The use of 11alpha-(2)H cortisol as a tracer appears to offer a significant advance in evaluating human 11beta-HSD2 activity in vivo.  相似文献   

10.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11β-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11β-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11β-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11β-HSD1 inhibitors that inhibit human 11β-HSD1 in the low micromolar range. Docking studies with 1–3 into the crystal structure of human 11β-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series.  相似文献   

11.
Several studies have shown that the native 7alpha-hydroxy-dehydroepiandrosterone (7alpha-hydroxy-DHEA) is a substrate for the human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) which converts the 7alpha- into the 7beta-epimer through an oxido-reduction process. Research on the 11beta-HSD1 has investigated its function and structure through using native glucocorticoid substrates and known inhibitors. Other steroid substrates are also of interest. Among testosterone metabolites, 5alpha-androstane-3beta,17beta-diol (Adiol) is a substrate for the cytochrome P450 7B1 which produces 5alpha-androstane-3beta,7alpha,17beta-triol (7alpha-Adiol). This steroid may be a substrate for the 11beta-HSD1. We used recombinant yeast-expressed 11beta-HSD1 with NADP(H)-regenerating systems for examining the products obtained after incubation with 7alpha-Adiol, 7beta-Adiol or 7-oxo-Adiol. Oxidative conditions for the 11beta-HSD1 provided no trace of 7-oxo-Adiol but the inter-conversion of 7alpha- and 7beta-hydroxy-Adiol with V(max)/K(M) (pmol min(-1) microg(-1)/microM) values of 2 and 0.5, respectively. This state was maintained under reductive conditions. The use of a 7-oxo-Adiol substrate under reductive conditions led to the production of both 7alpha- and 7beta-hydroxy-Adiol with V(max)/K(M) values of 3.43 and 0.22, respectively. These findings support the hypothesis that the oxido-reductase and epimerase activities of 11beta-HSD1 depend on the positioning of the steroid substrates within the active site and may provide insight into its fine structure and mechanism of action.  相似文献   

12.
Very recently, the mouse 17alpha-hydroxysteroid dehydrogenase (m17alpha-HSD), a member of the aldo-keto reductase (AKR) superfamily, has been characterized and identified as the unique enzyme able to catalyze efficiently and in a stereospecific manner the conversion of androstenedione (Delta4) into epitestosterone (epi-T), the 17alpha-epimer of testosterone. Indeed, the other AKR enzymes that significantly reduce keto groups situated at position C17 of the steroid nucleus, the human type 3 3alpha-HSD (h3alpha-HSD3), the human and mouse type 5 17beta-HSD, and the rabbit 20alpha-HSD, produce only 17beta-hydroxy derivatives, although they possess more than 70% amino acid identity with m17alpha-HSD. Structural comparisons of these highly homologous enzymes thus offer an excellent opportunity of identifying the molecular determinants responsible for their 17alpha/17beta-stereospecificity. Here, we report the crystal structure of the m17alpha-HSD enzyme in its apo-form (1.9 A resolution) as well as those of two different forms of this enzyme in binary complex with NADP(H) (2.9 A and 1.35 A resolution). Interestingly, one of these binary complex structures could represent a conformational intermediate between the apoenzyme and the active binary complex. These structures provide a complete picture of the NADP(H)-enzyme interactions involving the flexible loop B, which can adopt two different conformations upon cofactor binding. Structural comparison with binary complexes of other AKR1C enzymes has also revealed particularities of the interaction between m17alpha-HSD and NADP(H), which explain why it has been possible to crystallize this enzyme in its apo form. Close inspection of the m17alpha-HSD steroid-binding cavity formed upon cofactor binding leads us to hypothesize that the residue at position 24 is of paramount importance for the stereospecificity of the reduction reaction. Mutagenic studies have showed that the m17alpha-HSD(A24Y) mutant exhibited a completely reversed stereospecificity, producing testosterone only from Delta4, whereas the h3alpha-HSD3(Y24A) mutant acquires the capacity to metabolize Delta4 into epi-T.  相似文献   

13.
The mouse 17alpha-hydroxysteroid dehydrogenase (m17alpha-HSD) is the unique known member of the aldo-keto reductase (AKR) superfamily able to catalyze efficiently and in a stereospecific manner the conversion of androstenedione (Delta4) into epi-testosterone (epi-T), the 17alpha-epimer of testosterone. Structural and mutagenic studies had already identified one of the residues delineating the steroid-binding cavity, A24, as the major molecular determinant for the stereospecificity of m17alpha-HSD. We report here a ternary complex crystal structure (m17alpha-HSD:NADP(+):epi-T) determined at 1.85 A resolution that confirms this and reveals a unique steroid-binding mode for an AKR enzyme. Indeed, in addition to the interactions found in all other AKRs (van der Waals contacts stabilizing the core of the steroid and the hydrogen bonds established at the catalytic site by the Y55 and H117 residues with the oxygen atom of the ketone group to be reduced), m17alpha-HSD establishes with the other extremity of the steroid nucleus an additional interaction involving K31. By combining direct mutagenesis and kinetic studies, we found that the elimination of this hydrogen bond did not affect the affinity of the enzyme for its steroid substrate but led to a slight but significant increase of its catalytic efficiency (k(cat)/K(m)), suggesting a role for K31 in the release of the steroidal product at the end of the reaction. This previously unobserved steroid-binding mode for an AKR is similar to that adopted by other steroid-binding proteins, the hydroxysteroid dehydrogenases of the short-chain dehydrogenases/reductases (SDR) family and the steroid hormone nuclear receptors. Mutagenesis and structural studies made on the human type 3 3alpha-HSD, a closely related enzyme that shares 73% amino acids identity with the m17alpha-HSD, also revealed that the residue at position 24 of these two enzymes directly affects the binding and/or the release of NADPH, in addition to its role in their 17alpha/17beta stereospecificity.  相似文献   

14.
Abstract: The binding characteristics of the novel 11C-labeled nicotinic ligands (R,S)-1-methyl-2-(3-pyridyl) azetidine (MPA) and (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT-418) were investigated in comparison with those of (S)-[11C]nicotine in vitro in the rat brain to be able to predict the binding properties of the new ligands for positron emission tomography studies in vivo. The data from time-resolved experiments for all ligands indicated fast binding kinetics, with the exception of a slower dissociation of [11C]MPA in comparison with (S)-[11C]nicotine and [11C]ABT-418. Saturation experiments revealed for all ligands two nicotinic receptor binding sites with affinity constants (KD values) of 2.4 and 560 nM and binding site densities (Bmax values) of 65.5 and 223 fmol/mg of protein for (S)-[11C]nicotine, KD values of 0.011 and 2.2 nM and Bmax values of 4.4 and 70.7 fmol/mg of protein for [11C]MPA, and KD values of 1.3 and 33.4 nM and Bmax values of 8.8 and 69.2 fmol/mg of protein for [11C]ABT-418. In competing with the 11C-ligands, epibatidine was most potent, followed by cytisine. A different rank order of potencies was found for (?)-nicotine, (+)-nicotine, MPA, and ABT-418 displacing each of the 11C-ligands. Autoradiograms displayed a similar pattern of receptor binding for all ligands, whereby [11C]MPA showed the most distinct binding pattern and the lowest nonspecific binding. We conclude that the three 11C-labeled nicotinic ligands were suitable for characterizing nicotinic receptors in vitro. The very high affinity of [11C]MPA to nicotinic acetylcholine receptors, its low nonspecific binding, and especially the slower dissociation kinetics of the [11C]MPA from the putative high-affinity nicotinic acetylcholine receptor binding site compared with (S)-[11C]nicotine and [11C]ABT-418 raise the level of interest in [11C]MPA for application in positron emission tomography.  相似文献   

15.
11-Beta-Hydroxysteroid dehydrogenase-1(11β-HSD1) inhibitors are one of the emerging classes of molecules to fight against diabetic complications. A novel series of 4-(1-substituted-1H-1,2,3-triazol-4-yl)-1,4-dihydropyridine derivatives were synthesized and evaluated for their anti-diabetic activity. Two compounds showed anti-diabetic activity very effectively. To clarify the mechanism of action of these compounds, the most potent compounds (5g and 5h) of the synthesized analogs were further studied by testing its 11-Beta Hydroxysteroid dehydrogenase-1 inhibitory activity through in vitro enzymatic experiments. The results showed that the 11β-HSD1 inhibitory activity of compounds 5g and 5h was stable and efficient. Molecular docking studies revealed compounds 5g (−9.758) and 5h (−8.495) to have a stable binding patterns to the human 11-Beta-Hydroxysteroid dehydrogenase-1.  相似文献   

16.
The human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes both the NADP(H)-dependent oxido-reduction of cortisol and cortisone and the inter-conversion of 7alpha- and 7beta-hydroxy-dehydroepiandrosterone (DHEA) through a 7-oxo-DHEA intermediate. As shown with human liver and intestine fractions, 7alpha-hydroxy-epiandrosterone (7alpha-hydroxy-EpiA) and 7beta-hydroxy-EpiA were readily inter-converted with no evidence for a 7-oxo-EpiA intermediate. Whether this inter-conversion resulted from action of the 11beta-HSD1 or from an unknown epimerase is unresolved. Furthermore, whether these steroids could inhibit the cortisol-cortisone oxido-reduction remains a question. The recombinant human 11beta-HSD1 was used to test these questions. NADP(+) supplementation only provided the production of 7beta-hydroxy-EpiA out of 7alpha-hydroxy-EpiA with a V(max)/K(M) ratio at 0.1. With NADPH supplementation, both 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA were formed in low amounts from 7beta-hydroxy-EpiA and 7alpha-hydroxy-EpiA, respectively. These inter-conversions occurred without a trace of the putative 7-oxo-EpiA intermediate. In contrast, the 7-oxo-EpiA substrate was efficiently reduced into 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA, with V(max)/K(M) ratios of 23.6 and 5.8, respectively. Competitive and mixed type inhibitions of the 11beta-HSD1-mediated cortisol oxidation were exerted by 7alpha-hydroxy-EpiA and 7beta-hydroxy-EpiA, respectively. The 11beta-HSD1-mediated cortisone reduction was inhibited in a competitive manner by 7-oxo-EpiA. These findings suggest that the active site of the human 11beta-HSD1 may carry out directly the epimeric transformation of 7-hydroxylated EpiA substrates. The low amounts of these steroids in human do not support a physiological importance for modulation of the glucocorticoid status in tissues.  相似文献   

17.
Racemic cis-1,1-dioxo-5,6-dihydro-[4,1,2]oxathiazine derivative 4a was isolated as an impurity in a sample of a hit from a HTS campaign on 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). After separation by chiral chromatography the 4a-S, 8a-R enantiomer of compound 4a was identified as the true, potent enzyme inhibitor. The cocrystal structure of 4a with human and murine 11ß-HSD1 revealed the unique binding mode of the oxathiazine series. SAR elucidation and optimization in regard to metabolic stability led to monocyclic tetramethyloxathiazines as exemplified by compound 21g.  相似文献   

18.

Background

Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation.

Methods

J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases.

Results

ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP.

Conclusions

Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin.

General significance

ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.  相似文献   

19.
Mineralocorticoid receptor (MR) activation in renal epithelial cells in response to the binding of aldosterone has long been implicated in the maintenance of body salt and fluid homeostasis and blood pressure control. 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is believed to confer specificity on aldosterone to activate MR by inactivating 11β-hydroxyglucocorticoids (corticosterone, cortisol) that are 100-1000 times more abundant in plasma than aldosterone and that can also bind and activate MR. Increasing evidence, however, challenges such a simple view of MR activation as well as its interaction with glucocorticoids and 11β-HSDs. In non-epithelial tissues including brain, cardiomyocytes and macrophages, 11β-hydroxyglucocorticoids seem to act as MR antagonists, and redox changes and signaling events may play pivotal roles for receptor activation in these tissues. This review addresses the emerging new view of the complex mechanisms underlying MR specificity of action, with a diversity of physiological roles and functions in different mineralocorticoid-responsive tissues.  相似文献   

20.
Many adamantane derivatives have been demonstrated to function as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors. 3-Amino-N-adamantyl-3-methylbutanamide derivatives were optimized by structure-based drug design. Compound 8j exhibited a good in vitro and ex vivo inhibitory activity against both human and mouse 11β-HSD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号