共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature-induced unfolding of Escherichia coli trigger factor (TF) and its domain truncation mutants, NM and MC, were studied by ultra-sensitive differential scanning calorimetry (UC-DSC). Detailed thermodynamic analysis showed that thermal induced unfolding of TF and MC involves population of dimeric intermediates. In contrast, the thermal unfolding of the NM mutant involves population of only monomeric states. Covalent cross-linking experiments confirmed the presence of dimeric intermediates during thermal unfolding of TF and MC. These data not only suggest that the dimeric form of TF is extremely resistant to thermal unfolding, but also provide further evidence that the C-terminal domain of TF plays a vital role in forming and stabilizing the dimeric structure of the TF molecule. Since TF is the first molecular chaperone that nascent polypeptides encounter in eubacteria, the stable dimeric intermediates of TF populated during thermal denaturation might be important in responding to stress damage to the cell, such as heat shock. 相似文献
2.
Thermal inactivation of Listeria monocytogenes studied by differential scanning calorimetry 总被引:5,自引:0,他引:5
The effect of NaCl on the thermal inactivation of Listeria monocytogenes has been investigated by conventional microbiological techniques and by using differential scanning calorimetry (DSC). Addition of 1.5 M-NaCl to cells grown at lower NaCl concentrations significantly increases the tolerance of cells to mild heat stress (56-62 degrees C). DSC thermograms show five main peaks which are shifted to higher temperatures in the presence of 1.5 M-NaCl. Measurement of loss of viability in the calorimeter gave good correlation between cell death and the first major thermogram peak at two NaCl concentrations. The time course of the loss of this first peak when cells were heated and held at 60 degrees C in the calorimeter matched the loss of viability, whereas the peak attributable to DNA showed little change during this process. The use of DSC to investigate the mechanisms involved in thermal inactivation is discussed. 相似文献
3.
I. Poirier P.-A. Maréchal C. Evrard P. Gervais 《Applied microbiology and biotechnology》1998,50(6):704-709
Escherichia coli and Lactobacillus plantarum were subjected to final water potentials of −5.6 MPa and −11.5 MPa with three solutes: glycerol, sorbitol and NaCl. The water potential decrease was realized either rapidly (osmotic shock) or slowly (20 min) and a difference in cell viability between these conditions was only observed when the solute was NaCl. The cell mortality during osmotic shocks induced by NaCl cannot be explained by a critical volume decrease or by the intensity of the water flow across the cell membrane. When the osmotic stress is realized with NaCl as the solute, in a medium in which osmoregulation cannot take place, the application of a slow decrease in water potential resulted in the significant maintenance of cell viability (about 70–90%) with regard to the corresponding viability observed after a sudden step change to same final water potential (14–40%). This viability difference can be explained by the existence of a critical internal free Na+ concentration. Received: 20 May 1998 / Received revision: 31 July 1998 / Accepted: 31 July 1998 相似文献
4.
B M Mackey C A Miles S E Parsons D A Seymour 《Journal of general microbiology》1991,137(10):2361-2374
Thermograms of whole cells of Escherichia coli obtained by differential scanning calorimetry contained ten main peaks (denoted f, l, m1, m2, m3, n, p, q, r and s) occurring at temperatures of approximately 25, 54, 61, 71, 76, 81, 95, 105, 118 and 124 degrees C, respectively. After cooling to 5 degrees C and reheating, peaks denoted fr, mr and pr were observed at 23, 73 and 94 degrees C, respectively. By examining thermograms of different cell fractions we have identified the following thermal denaturation events. During primary heating there is a broad endotherm (f) beginning below 20 degrees C and extending to just above 40 degrees C that is caused by melting of membrane lipids. Superimposed on this is an exothermic process associated with a change of state of the peptidoglycan. The first irreversible denaturation event occurs just above 47 degrees C, associated with the onset of denaturation of the 30S ribosomal subunit and soluble cytoplasmic proteins. Ribosome melting is a complex process occurring between 47 and 85 degrees C and is characterized by peaks m1, m2 and n. Peak m3 at 75-76 degrees C is of unknown identity but may possibly represent melting of tRNA. Peak p at 95 degrees C results from melting of a portion of the cellular DNA combined with denaturation of a cell wall component. Peak q at 105 degrees C is multicomponent and may be caused by melting of a different region of DNA together with denaturation of another cell wall component. The complex events denoted r and s at 118 and 125 degrees C, respectively, are associated with denaturation of a component of the cell envelope, and possibly also of DNA. Following cooling and reheating there is a broad endotherm with a maximum at 23 degrees C caused by remelting of membrane lipid and a very broad endotherm extending between 40 and 100 degrees C caused by the remelting of ribosomal RNA. Peak pr at 94 degrees C is caused by the melting of reannealed DNA. Additional features not appearing in whole cells were evident in some cell fractions. These observations should allow us to distinguish events that may lead to loss of viability from those that do not. 相似文献
5.
The cyclic AMP receptor protein (CRP) regulates the expression of many genes in Escherichia coli. The protein is a homodimer, and each monomer is folded into two distinct structural domains. In this study, we have used differential scanning calorimetry (DSC) and circular dichroism (CD) to measure the enthalpy change and melting temperature of the apo-CRP and CRP complexes with cAMP or DNA sequences lac, gal, and palindromic ICAP. DSC and CD measurements showed irreversible thermal denaturation process of CRP. Enthalpy of dissociation of the protein–DNA complex, as measured by DSC, depends on the DNA sequence. The thermal transition of the protein in CRP-DNA complexes, measured by CD, indicates that the protein stability in the complex is also DNA sequence-dependent. 相似文献
6.
Lou C. Lievense Moniek A. M. Verbreek Ad Noomen Klaas van't Riet 《Applied microbiology and biotechnology》1994,41(1):90-94
The mechanism of dehydration inactivation of Lactobacillus plantarum cells after vacuum-drying above saturated salt solutions was studied. The method used is based on the hypothesis that DNase diffuses into cells with damaged cell membranes/walls and hydrolyses the intracellular DNA. Intact, undamaged cells and cells inactivated by either dehydration or heat treatent were incubated in the presence of DNase. The release of DNA hydrolysis products into the incubation medium was measured. It was shown that dehydration inactivation of L. plantarum, but not thermal inactivation, was associated with clear evidence of membrane damage. The residual glucose-fermenting activity of the dehydrated cells related to the release of hydrolysed DNA in the medium, but there was no such relationship with heat-treated cells. Addition of sorbitol to cells before dehydration increased the residual glucose-fermenting activity after drying and this was associated with a reduced rate of DNA hydrolysis. It is concluded that cell wall and/or cell membrane damage is an important mechanism of dehydration inactivation, but that thermal inactivation (up to 60°C) occurs by a different mechanism.Correspondence to: K. van't Riet 相似文献
7.
Torres K Trębacz H Chrościcki A Pietrzyk L Torres A 《Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society》2011,49(4):700-705
Abdominal surgeries alter the integrity of the peritoneal layer and cause imbalances among immunological, inflammatory and angiogenic mechanisms within the tissue. During laparoscopic procedures a protective function of the peritoneal layer can be disturbed by the gas used to create a pneumoperitoneum. The aim of this study was to characterize peritoneal tissue by means of differential scanning calorimetry (DSC) as a reference for future investigations on the influence of surgical procedures on the physicochemical state of the peritoneum. Thirty-seven patients participated in the study. Patients were divided into three groups according to the type of surgery: group H - patients who underwent hernia repair; group Ch - patients who underwent laparoscopic cholecystectomy; and group C - patients operated due to rectal cancer. It was observed that onset temperature (T(o)), denaturation temperature (T(m)) and change of enthalpy (ΔH) during thermal denaturation of peritoneal collagen in were significantly different for these three groups of patients. The mean values of onset temperature (T(o)) and denaturation temperature (T(m)) in group H were significantly lower, while DH in this group was significantly higher than in the two other groups (Ch and C). This preliminary study does not answer whether the differences in collagen denaturation found in peritoneal tissue from different groups of patients resulted from a different inherent state of the tissue, or from surgical procedures. However, the results suggest that DSC is an appropriate method to study subtle changes in the physicochemical condition of the peritoneum using small samples obtained during surgical procedures. 相似文献
8.
Wasylewski M 《Biochimica et biophysica acta》2004,1702(2):137-143
Riboflavin binding (or carrier) protein (RfBP) is a monomeric, two-domain protein, originally purified from hens' egg white. RfBP contains nine disulfide bridges; as a result, the protein forms a compact structure and undergoes reversible three-state thermal denaturation. This was demonstrated using a differential scanning calorimetry (DSC) method [Wasylewski M. (2000) J. Prot. Chem. 19(6), 523-528]. It has been shown that the RfBP complex with riboflavin denaturates in a three-state process which may be attributed to sequential unfolding of the RfBP domains. In case of apo RfBP, the ligand binding domain denaturates at a lower temperature than the C-terminal domain. Ligand binding greatly enhances the thermostability of the N-terminal domain, whereas the C-terminal domain thermostability is only slightly affected and, in case of the examined holo RfBPs, the denaturation peaks of both domains merge or cross over. The magnitude of the changes depends on ligand structure. A detailed study of protein concentration effects carried out in this work allowed to estimate not only the thermostability of both domains but also the strength of domain interactions. The DeltaCp, of denaturation was found for C-terminus and N-terminus of RfBP-riboflavin complex to amount to 2.5 and -1.9 kcal mol(-1), respectively. The calculated domain interaction free energy, DeltaGCN, was estimated to be approximately -1580 cal mol(-1) at 67.0 degrees C. This value indicates that the interdomain interaction is of medium strength. 相似文献
9.
AIMS: The effect of critical pulsed electric field (PEF) process parameters, such as electric field strength, pulse length and number of pulses, on inactivation of Lactobacillus plantarum was investigated. METHODS AND RESULTS: Experiments were performed in a pH 4.5 sodium phosphate buffer having a conductivity of 0.1 S m-1, using a laboratory-scale continuous PEF apparatus with a co-linear treatment chamber. An inactivation model was developed as a function of field strength, pulse length and number of pulses. Based on this inactivation model, the conditions for a PEF treatment were optimized with respect to the minimum energy required to obtain a certain level of inactivation. It was shown that the least efficient process parameter in the range investigated was the number of pulses. The most efficient way to optimize inactivation of Lact. plantarum was to increase the field strength up to 25.7 kV cm-1, at the shortest pulse length investigated, 0.85 micros, and using a minimum number of pulses. The highest inactivation of Lact. plantarum at the lowest energy costs is obtained by using the equation: E=26.7tau0.23, in which E is the field strength and tau the pulse length. An optimum is reached by substituting tau with 5.1. CONCLUSIONS: This study demonstrates that the correct choice of parameters, as predicted by the model described here, can considerably improve the PEF process. SIGNIFICANCE AND IMPACT OF THE STUDY: The knowledge gained in this study improves the understanding of the limitations and opportunities of the PEF process. Consequently, the advantage of the PEF process as a new option for non-thermal decontamination can be better utilized. 相似文献
10.
Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua 总被引:1,自引:0,他引:1
Fitzgerald DJ Stratford M Gasson MJ Ueckert J Bos A Narbad A 《Journal of applied microbiology》2004,97(1):104-113
AIMS: To investigate the mode of action of vanillin, the principle flavour component of vanilla, with regard to its antimicrobial activity against Escherichia coli, Lactobacillus plantarum and Listeria innocua. METHODS AND RESULTS: In laboratory media, MICs of 15, 75 and 35 mmol l(-1) vanillin were established for E. coli, Lact. plantarum and L. innocua, respectively. The observed inhibition was found to be bacteriostatic. Exposure to 10-40 mmol l(-1) vanillin inhibited respiration of E. coli and L. innocua. Addition of 50-70 mmol l(-1) vanillin to bacterial cell suspensions of the three organisms led to an increase in the uptake of the nucleic acid stain propidium iodide; however a significant proportion of cells still remained unstained indicating their cytoplasmic membranes were largely intact. Exposure to 50 mmol l(-1) vanillin completely dissipated potassium ion gradients in cultures of Lact. plantarum within 40 min, while partial potassium gradients remained in cultures of E. coli and L. innocua. Furthermore, the addition of 100 mmol l(-1) vanillin to cultures of Lact. plantarum resulted in the loss of pH homeostasis. However, intracellular ATP pools were largely unaffected in E. coli and L. innocua cultures upon exposure to 50 mmol l(-1) vanillin, while ATP production was stimulated in Lact. plantarum cultures. In contrast to the more potent activity of carvacrol, a well studied phenolic flavour compound, the extent of membrane damage caused by vanillin is less severe. CONCLUSIONS: Vanillin is primarily a membrane-active compound, resulting in the dissipation of ion gradients and the inhibition of respiration, the extent to which is species-specific. These effects initially do not halt the production of ATP. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding the mode of action of natural antimicrobials may facilitate their application as natural food preservatives, particularly for their potential use in preservation systems employing multiple hurdles. 相似文献
11.
Fish DJ Brewood GP Kim JS Garbett NC Chaires JB Benight AS 《Biophysical chemistry》2010,152(1-3):184-190
Melting curves of human plasma measured by differential scanning calorimetry (DSC), known as thermograms, have the potential to markedly impact diagnosis of human diseases. A general statistical methodology is developed to analyze and classify DSC thermograms to analyze and classify thermograms. Analysis of an acquired thermogram involves comparison with a database of empirical reference thermograms from clinically characterized diseases. Two parameters, a distance metric, P, and correlation coefficient, r, are combined to produce a 'similarity metric,' ρ, which can be used to classify unknown thermograms into pre-characterized categories. Simulated thermograms known to lie within or fall outside of the 90% quantile range around a median reference are also analyzed. Results verify the utility of the methods and establish the apparent dynamic range of the metric ρ. Methods are then applied to data obtained from a collection of plasma samples from patients clinically diagnosed with SLE (lupus). High correspondence is found between curve shapes and values of the metric ρ. In a final application, an elementary classification rule is implemented to successfully analyze and classify unlabeled thermograms. These methods constitute a set of powerful yet easy to implement tools for quantitative classification, analysis and interpretation of DSC plasma melting curves. 相似文献
12.
High hydrostatic pressure is a new technology in the food processing industry, and is used for cold pasteurization of food products. However, the pressure inactivation of food-borne microorganisms requires very high pressures (generally more than 400 MPa) and long pressure holding times (5 min or more). Carrying out pressure processing at low temperatures without freezing can reduce these parameters, which presently limit the application of this technology, in keeping the quality of fresh raw product. The yeast, Saccharomyces cerevisiae and the bacterium, Lactobacillus plantarum were pressurized for 10 min at temperatures between -20 and 25 degrees C and pressure between 100 and 350 MPa. Pressurization at subzero temperatures without freezing significantly enhanced the effect of pressure. For example, at a pressure of 150 MPa, the decrease in temperature from ambient to -20 degrees C allowed an increase in the pressure-induced inactivation from less than 1 log up to 7-8 log for each microorganism studied. However, for comparable inactivation levels, the kinetics of microorganism inactivation did not differ, which suggests identical inactivation mechanisms. Implications of water thermodynamical properties like compression, protein denaturation, as well as membrane phase transitions, are discussed. 相似文献
13.
Klangpetch W Noma S Igura N Shimoda M 《Bioscience, biotechnology, and biochemistry》2011,75(10):1945-1950
The heat inactivating effect of low-pressure carbonation (LPC) at 1 MPa against Escherichia coli was enhanced to 3.5log orders. This study aimed to investigate the mechanisms of this increase in heat inactivation efficiency. The increased inactivation ratio was found to be the result of LPC-induced heat sensitization. This sensitization was not due to any physical damage to the cells as a result of the treatment. Following the depletion of intracellular ATP, the failure of the cells to discard protons caused an abnormal decrease in the intracellular pH. However, in the presence of glucose, the inactivation ratio decreased. In addition, a further increase in inactivation of more than 2log orders occurred in the presence of the protein synthesis inhibitor chloramphenicol. Hence, the decreased heat resistance of E. coli under LPC was most likely due to a depletion of intracellular ATP and a decreased capacity for protein synthesis. 相似文献
14.
15.
DNA melting investigated by differential scanning calorimetry and Raman spectroscopy. 总被引:3,自引:0,他引:3
下载免费PDF全文

Thermal denaturation of the B form of double-stranded DNA has been probed by differential scanning calorimetry (DSC) and Raman spectroscopy of 160 base pair (bp) fragments of calf thymus DNA. The DSC results indicate a median melting temperature Tm = 75.5 degrees C with calorimetric enthalpy change delta Hcal = 6.7 kcal/mol (bp), van't Hoff enthalpy change delta HVH = 50.4 kcal/mol (cooperative unit), and calorimetric entropy change delta Scal = 19.3 cal/deg.mol (bp), at the experimental conditions of 55 mg DNA/ml in 5 mM sodium cacodylate at pH 6.4. The average cooperative melting unit (nmelt) comprises 7.5 bp. The Raman signature of 160 bp DNA is highly sensitive to temperature. Analyses of several conformation-sensitive Raman bands indicate the following ranges for thermodynamic parameters of melting: 43 < delta HVH < 61 kcal/mol (cooperative unit), 75 < Tm < 80 degrees C and 6 < (nmelt) < 9 bp, consistent with the DSC results. The changes observed in specific Raman band frequencies and intensities as a function of temperature reveal that thermal denaturation is accompanied by disruption of Watson-Crick base pairs, unstacking of the bases and disordering of the B form backbone. These three types of structural change are highly correlated throughout the investigated temperature range of 20 to 93 degrees C. Raman bands diagnostic of purine and pyrimidine unstacking, conformational rearrangements in the deoxyribose-phosphate moieties, and changes in environment of phosphate groups have been identified. Among these, bands at 834 cm-1 (due to a localized vibration of the phosphodiester group), 1240 cm-1 (thymine ring) and 1668 cm-1 (carbonyl groups of dT, dG and dC), are shown by comparison with DSC results to be the most reliable quantitative indicators of DNA melting. Conversely, the intensities of Raman marker bands at 786 cm-1 (cytosine ring), 1014 cm-1 (deoxyribose ring) and 1092 cm-1 (phosphate group) are largely invariant to melting and are proposed as appropriate standards for intensity normalizations. 相似文献
16.
Using phase transition profile as an indicator of thermodynamic property and phase transition heat as the second indicator of the percentage of substrates unhydrolyzed, differential scanning calorimetry has been used to observe in detail the kinetics and thermodynamics of phospholipase A(2)-catalyzed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine large unilamellar vesicle (LUV) hydrolysis. Phase transition profiles show that the original LUV almost completely changes into a novel aggregate at the end of the latency, followed by an abrupt activation of the reaction. The phase transition profiles are asymmetric between the heating and cooling curves, indicating a thermodynamic mesostatic property of the system. The reaction in activated phase follows a single first-order kinetics and all of the substrates in vesicles can be hydrolyzed. All these evidences indicate that the products and substrates can freely exchange between the outer and the inner layers of the vesicles and the membrane of the vesicle in the activated phase is permeable. This permeability favors the exchange of the substrates and products, thus, resulting in the activation of the fast reaction. 相似文献
17.
18.
Thermograms of the exosporium-lacking dormant spores of Bacillus megaterium ATCC 33729, obtained by differential scanning calorimetry, showed three major irreversible endothermic transitions with peaks at 56, 100, and 114 degrees C and a major irreversible exothermic transition with a peak at 119 degrees C. The 114 degrees C transition was identified with coat proteins, and the 56 degrees C transition was identified with heat inactivation. Thermograms of the germinated spores and vegetative cells were much alike, including an endothermic transition attributable to DNA. The ascending part of the main endothermic 100 degrees C transition in the dormant-spore thermograms corresponded to a first-order reaction and was correlated with spore death; i.e., greater than 99.9% of the spores were killed when the transition peak was reached. The maximum death rate of the dormant spores during calorimetry, calculated from separately measured D and z values, occurred at temperatures above the 73 degrees C onset of thermal denaturation and was equivalent to the maximum inactivation rate calculated for the critical target. Most of the spore killing occurred before the release of most of the dipicolinic acid and other intraprotoplast materials. The exothermic 119 degrees C transition was a consequence of the endothermic 100 degrees C transition and probably represented the aggregation of intraprotoplast spore components. Taken together with prior evidence, the results suggest that a crucial protein is the rate-limiting primary target in the heat killing of dormant bacterial spores. 相似文献
19.
Zhou Yi Ni Xueqin Duan Ling Niu Lili Liu Qian Zeng Yan Wang Qiang Wang Jie Khalique Abdul Pan Kangcheng Jing Bo Zeng Dong 《Probiotics and antimicrobial proteins》2021,13(3):664-676
Probiotics and Antimicrobial Proteins - Giant pandas often suffered from gastrointestinal disease, especially the captive sub-adult one. Our study aims to investigate whether L. plantarum G83, a... 相似文献
20.
Pierre Joanne Cécile Galanth Nicole Goasdoué Pierre Nicolas Sandrine Sagan Solange Lavielle Gérard Chassaing Chahrazade El Amri Isabel D. Alves 《生物化学与生物物理学报:生物膜》2009,1788(9):1772-1781
The overlapping biological behaviors between some cell penetrating peptides (CPPs) and antimicrobial peptides (AMPs) suggest both common and different membrane interaction mechanisms. We thus explore the capacity of selected CPPs and AMPs to reorganize the planar distribution of binary lipid mixtures by means of differential scanning calorimetry (DSC). Additionally, membrane integrity assays and circular dichroism (CD) experiments were performed. Two CPPs (Penetratin and RL16) and AMPs belonging to the dermaseptin superfamily (Drs B2 and C-terminal truncated analog [1–23]-Drs B2 and two plasticins DRP-PBN2 and DRP-PD36KF) were selected. Herein we probed the impact of headgroup charges and acyl chain composition (length and unsaturation) on the peptide/lipid interaction by using binary lipid mixtures. All peptides were shown to be α-helical in all the lipid mixtures investigated, except for the two CPPs and [1–23]-Drs B2 in the presence of zwitterionic lipid mixtures where they were rather unstructured. Depending on the lipid composition and peptide sequence, simple binding to the lipid surface that occur without affecting the lipid distribution is observed in particular in the case of AMPs. Recruitments and segregation of lipids were observed, essentially for CPPs, without a clear relationship between peptide conformation and their effect in the lipid lateral organization. Nonetheless, in most cases after initial electrostatic recognition between the peptide charged amino acids and the lipid headgroups, the lipids with the lowest phase transition temperature were selectively recruited by cationic peptides while those with the highest phase transition were segregated. Membrane activities of CPPs and AMPs could be thus related to their preferential interactions with membrane defects that correspond to areas with marked fluidity. Moreover, due to the distinct membrane composition of prokaryotes and eukaryotes, lateral heterogeneity may be differently affected by cationic peptides leading to either uptake or/and antimicrobial activities. 相似文献