首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
含有内含子的tRNA前体必须经过剪接反应加工成熟.顺序比较指出与内含子顺序相邻的核苷酸有一定的特异性.用寡核苷酸定点突变技术改变这2个位点的核苷酸,确定这些tRNA前体的剪接效率.结果如下:当37位和38位都是嘌呤核苷酸时,tRNA内切酶能够有效地酶切酵母 tRNA~(phe)前体;如果其中的 1个位点变成嘧啶核苷酸,但另1个位点的核苷酸是野生型的嘌呤核苷酸,tRNA前体的酶切效率将降低.如果2个位点的核苷酸都发生变异,其中1个是嘧啶核苷酸,另1个是变异的嘌呤核苷酸,tRNA前体的酶切效率就会进一步降低.如果2个位点都是嘧啶核苷酸,tRNA前体就难以为tRNA内切酶酶切了.由此提出,与内含子相邻的核苷酸也是tRNA由切酶识别的结构特征.tRNA前体的37位和38位核苷酸的改变可能影响剪接位点之间的距离或它们的精细结构,从而影响tRNA内切酶酶切的效率.  相似文献   

2.
氨酰-tRNA合成酶对tRNA的识别   总被引:1,自引:0,他引:1  
氨酰-tRNA合成酶(aaRS)与tRNA的相互作用保证了蛋白质生物合成的忠实性. 氨酰-tRNA合成酶对tRNA识别的专一性依赖于aaRS特定的催化结构域和tRNA分子特异的三级结构构象. 反密码子和接受茎(包括73位)在大多数aaRS对tRNA分子的识别过程中起着关键作用, 其他部位如可变口袋、可变(茎)环等, 甚至修饰核苷酸对于一些识别过程也有重要作用.  相似文献   

3.
若把信使RNA(mRNA)为不同氨基酸的编码称为第一套遗传密码,或经典的遗传密码,这里把以氨酰转移RNA(tRNA)合成酶为媒介,使一种氨基酸与适当的tRNA分子偶联的遗传密码叫做第二套遗传密码。人们早就发现在tRNA分子中,识别氨基酸的位点不都取决于反密码子,但长期以来没有破译氨基酸与tRNA之间的密码关系。最近美国麻省理工学院的Hou,Y—M和Schimmel,P首次发现,大肠杆菌丙氨酸tRNA中的G_3U_(70)单一碱基对是决定接受丙氨酸的密码。但它并不像第一套遗传密码中的  相似文献   

4.
用定点突变技术将不同核苷酸引入酵母苯丙氨酸tRNA反密码子环32,37和38位.体外转录制备tRNA前体,其32,37和38位的核苷酸与野生型tRNA前体相应位点的核苷酸不同.用纯化的酵母tRNA内切酶和tRNA连接酶对这些tR-NA前体进行剪接加工.结果说明,这些位点的核苷酸不仅影响tRNA内切酶对tR-NA前体的酶切效率,而且3’-半分子5’-末端双链结构阻止tRNA连接酶将相应的tRNA半分子连接成整分子tRNA.  相似文献   

5.
周觅  刘如娟  王恩多 《生命科学》2014,(10):1032-1037
转移核糖核酸(tRNA)的转录后修饰对tRNA正常行使生物学功能具有重要意义,这些功能包括tRNA的正确折叠和维持其稳定性、在核糖体上正确解码。虽然tRNA转录后大部分核苷酸修饰形式在20世纪70年代已被鉴定出,但最近才在大肠杆菌及酵母中鉴定出催化这些tRNA核苷酸修饰的酶的绝大部分基因。这些修饰酶基因的鉴定为研究tRNA转录后修饰的生物功能开启了新的大门。人胞质tRNA和线粒体tRNA(mt tRNA)都存在大量核苷酸修饰,这些修饰的缺陷常常与多种人类疾病相关。因此,研究tRNA核苷酸修饰有助于我们了解相关疾病的发病机理。  相似文献   

6.
采用PCR扩增出大鼠肝tRNAIle基因,构建了重组质粒pGWIW,并用T7RNA聚合酶/启动子系统对其进行了体外表达.经过对转录产物片段大小及运用Northernblot鉴定,证明获得了不含修饰核苷酸的大鼠肝tRNAIle生物学活性检测显示:合成基因体外转录产物氨基酰化活性是天然tRNA的40%,提示修饰核苷酸在哺乳动物Ile-tRNA合成酶的识别过程中起重要作用  相似文献   

7.
tRNA在蛋白质生物合成中的主要作用是转运氨基酸,此外,tRNA与第二套密码的研究及与多胺的作用亦受到重视。传统的专一tRNA制备方法,不仅步骤繁多且收获量极少(6.5 mg/4000g肝组织),难于满足进一步用NMR,ESR等技术研究的需要。利用基因工程的手段,在细胞中表达专一的tRNA可以克服传统制备方法的不足。为此我们设计合成了大鼠肝tRNA~(Ile)基因。合成的基因全长120bp,将其中U,Ψ,D核苷酸换成T,I换成G。为了方  相似文献   

8.
转移核糖核酸(tRNA)初期通称为可溶性核糖核酸(sRNA),它的发现已有三十余年的历史。tRNA在蛋白质生物合成的过程中起着关键性的作用,是将核酸的遗传讯息转译成蛋白质一级结构的生物大分子化合物,因此受到重视。早期的研究工作,偏重于从生物材料中分离纯化得到对一种氨基酸专一的纯tRNA,并测定其一级结构(核苷酸排列顺序)。1965年R.W.Holley实验室首先测定了酵母丙氨酸tRNA的一级结构,并因此获得了1968年诺贝尔生理学医学奖。自此以后tRNA的研究一直受到生物化学,分子生物学,分子遗传学等工作  相似文献   

9.
识别4个碱基密码子的tRNA与荧光标记的氨基酸结合部位特异的标记蛋白质的试剂盒开发成功。与奥林帕斯公司的一分子荧光分析系统相结合,将在蛋白质相互作用的分析方面发挥威力。[编者按]  相似文献   

10.
tRNase Z是一种核酸内切酶,许多细菌、大多数真核生物以及所有的古细菌的tRNA3’末端加工过程都是由核酸内切酶tRNase Z催化的。tRNase Z能催化缺乏CCA的tRNA前体生成末尾带有核苷酸识别的3’-OH和5’磷酸尾巴的成熟tRNA。这对于CCA序列的添加、tRNA的氨酰化和蛋白质的合成十分重要。tRNase Z属于metallo-β-lactamases(MBL)超家族,存在短(tRNase ZS)和长(tRNase ZL)两种形式,具有tRNA 3’末端加工、引导定位蛋白、加工rRNA、与Rex2P的相互作用、调节细胞分化与分裂等功能。预期对tRNaseZ的功能和属性不断深入研究将会对AIDS和前列腺癌的治疗具有潜在和实际的推动作用。  相似文献   

11.
在遗传信息从DNA到蛋白质流动的过程中,tRNA携带特异的氨基酸参与蛋白质合成,对于维持蛋白质翻译的忠实性起着非常重要的作用。生物体内共有20种氨酰tRNA合成酶,每一种均对应于一种氨基酸和一个tRNA类型。但是这种翻译过程仅仅限于20种天然氨基酸,因此在进行传统的蛋白质工程研究时常常受到限制。事实上,在蛋白质工程中借助于校正tRNA定点掺入非天然氨基酸可以提供蛋白质的结构信息,改进蛋白质检测与分离的方法,甚至赋予蛋白质某些新的特性。随着生物技术的发展和完善,tRNA介导蛋白质工程将不仅在蛋白质工程中发挥潜能,而且在研制新型生物材料和疾病诊断及药物治疗方面起到推动作用。  相似文献   

12.
tRNA在蛋白质合成过程中起着关键性的作用,不但为三联密码子翻译成氨基酸提供了接合体,而且为将氨基酸运送到核糖体提供了运送载体.在真核细胞中,tRNA前体必须经过广泛的加工修饰,成为成熟的tRNA分子才能充分发挥生物学功能.以往对tRNA的研究主要集中于tRNA的结构、功能、加工和成熟上,却很少关注tRNA分子的降解.最近研究发现tRNA的降解在tRNA的生成、加工和功能发挥上同样起着重要作用.  相似文献   

13.
tRNA介导蛋白质工程   总被引:1,自引:0,他引:1  
在遗传信息从DNA到蛋白质流动的过程中,tRNA携带特异的氨基酸参与蛋白质合成,对于维持蛋白质翻译的忠实性起着非常重要的作用,生物体内共有20种氨酰tRNA合成酶,每一种均对尖于一种氨基酸和一个tRNA类型,但是这种翻译过程仅仅限于20种天然氨基酸,因此在进行传统的蛋白质工程研究时常常受到限制,事实上,在蛋白质工程中借助于校正 tRNA定点掺入非天然氨基酸可以提供蛋白质的结构信息,改进蛋白质检测与分离的方法,甚至赋予蛋白质某些新的特性,随着生物技术的发展和完善,tRNA介导蛋白质工程将不仅在蛋白质工程中发挥潜能,而且在研制新型生物材料和疾病诊断及药物治疗方面起到推动作用。  相似文献   

14.
由tRNA引导的转录抗终止机制普遍存在于革兰氏阳性细菌中,调控氨酰-tRNA合成酶基因和与氨基酸合成有关的酶基因的表达. 当某种氨基酸缺乏时,与其相关的tRNA增多. tRNA通过反密码子和3′接受末端与前导mRNA的特异序列和T框作用,促进前导mRNA中的终止子结构转变为抗终止子结构,使转录复合物能够通读,从而实现基因的表达.  相似文献   

15.
哺乳动物氨基酰-tRNA合成酶的研究   总被引:1,自引:1,他引:0  
王恩多 《生命科学》2006,18(3):209-213
1 氨基酰-tRNA合成酶及哺乳动物细胞中氨基酰 tRNA合成酶的特点 1.1 氨基酰-tRNA合成酶催化的反应氨基酰-tRNA合成酶家族(aaRS)参与生物体中的遗传解码过程。它们催化氨基酸与其对应的 tRNA之间的酯化反应,生成氨基酰-tRNA参与蛋白质的生物合成,它反应的专一性确保了蛋白质生物合成的精确性。氨基酸与其对应的tRNA之间的  相似文献   

16.
肖景发  于军 《中国科学C辑》2009,39(8):717-726
根据DNA核苷酸组分的动态变化规律将遗传密码的传统排列按密码子对GC和嘌呤含量的敏感性进行了重排.新密码表可划分为2个半区(或1/2区)和4个四分区(或1/4区).就原核生物基因组而言,当GC含量增加时,物种蛋白质组所含的氨基酸倾向于使用GC富集区和嘌呤不敏感半区所编码的氨基酸,它们均使用四重简并密码,对DNA序列的突变具有相对鲁棒性(Robustness).当GC含量降低时,大多数密码子处于AU富集区和嘌呤敏感半区,这个区域编码的氨基酸具有物理化学性质的多样性.因为当密码子第三位核苷酸(CP3)在嘌呤和嘧啶之间发生转换时,密码子所编码的氨基酸也倾向于发生变化.关于遗传密码的进化存在多种假说,包括凝固事件假说、共进化假说和立体化学假说等,每种假说均试图解释遗传密码所表现出来的某些化学和生物学规律.基于遗传密码的物理化学性质、基因组变异的规律和相关的生物学假说,本研究提出了遗传密码分步进化假说(The Stepwise Evolution Hypothesis for the Genetic Code).在人们推断的最原始的RNA世界里,原初(Primordial)遗传密码从只能识别嘌呤和嘧啶开始,编码一个或两个简单而功能明确的氨基酸.由于胞嘧啶C的化学不稳定性,最初形成的遗传密码应该仅仅由腺嘌呤A和尿嘧啶U来编码,却可得到一组7个多元化的氨基酸.随着生命复杂性的增加,鸟嘌呤G从主载操作信号的功能中释放出来,再伴随着C的引入,使遗传密码逐步扩展到12,15和20个氨基酸,最终完成全部进化步骤.遗传密码的进化过程同时也伴随以蛋白质为主体的分子机制和细胞过程的进化,包括氨酰tRNA合成酶(AARS)从初始翻译机器上的脱离、DNA作为信息载体而取代RNA以及AARS和tRNA共进化等基本过程.分子机制和细胞过程是生命的基本组成元件,它们不但自己不断地趋于完善,也促使生命体走?  相似文献   

17.
翻译过程的模拟   总被引:1,自引:1,他引:0  
“基因指导蛋白质的合成”是一个教学重点,也是一个教学难点,尤其是翻译过程,由于其中存在mRNA与tRNA、tRNA与氨基酸、氨基酸序列与蛋白质等多个对应环节.因此相当一部分学生在学习这部分知识时有困难。鉴于此,怎样突破这个教学难点?这个问题一直在脑海中萦绕。  相似文献   

18.
1988年5月12日的Nature杂志上刊登了一篇题为“一种简单的结构特征是转移RNA特异性的主要决定子”(A Simple structural feature is a major determinant of the identity of a transfer RNA)的文章,立刻引起了轰动,5月13日的纽约时报和其它有关报刊大量刊登了许多著名分子生物学家的评论文章,对此项研究结果作了高度的评价,称tRNA特异性的这一决定子为“第二遗传密码”。这个使科学家们困惑了20年之久的难题终于得到了解答。这一难题是,在蛋白质的合成过程中,在翻译中起关键作用的tRNA分子如何识别特定的氨基酸,也就是说,究竟是tRNA分子的哪一部位对氨基酸的特异性结合起着决定性的作用。  相似文献   

19.
原生动物的一些纤毛虫中终止密码子发生重分配现象,将1个或2个终止密码子翻译为氨基酸.目前对这一现象的发生机制仍无合理解释.近年来,对蛋白质合成终止过程中肽链释放因子(eukaryotic polypeptide release factor, eRF)结构和功能的深入研究,为揭示终止密码子的重分配机制提供了重要的线索.本实验以具有终止密码子识别特异性的四膜虫Tt-eRF1为研究对象,将其中与密码子识别有关的GTx、NIKS和Y-C-F关键模体(motif) 引入识别通用终止密码子的酵母Sc=eRF1中,构建成各种嵌合体eRF1.利用双荧光素酶报告系统和细胞活性实验,分析关键模体及其周边的氨基酸对eRF1识别终止密码子性质的影响.结果表明,GTx和NIKS模体一定程度上决定eRF1识别终止密码子第1位碱基U和第2位碱基A;Y-C-F模体决定eRF1识别终止密码子UGA的第2位碱基G.模体内及其相邻氨基酸定点突变分析进一步支持以上结果.本研究推测,eRF1在进化过程中一些关键模体结构的改变决定其识别终止密码子的特异性,只能识别3个终止密码子中的1个或2个.随后,由于tRNA基因的突变产生阻抑性tRNA,促成终止密码子在原生动物纤毛虫中的重新分配.  相似文献   

20.
由大肠杆菌和其他材料的研究结果得知,负责编码tRNA的基因,总是先转录为前体tRNA,然后切去头尾若干个核苷酸,加工出成熟tRNA分子,而且tRNA基因在细胞里具有中度重复顺序,不同种tRNA基因往往纵向成串排列;但没有发现过有内涵子(intron)。 1982年哈佛大学3位研究人员发现玉米叶绿体的tRNA_(UAA)~(Leu)基因中含有1个458个碱基  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号