首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of nuclear mRNA export is critical for proper eukaryotic gene expression. A key step in this process is the directional translocation of mRNA-ribonucleoprotein particles (mRNPs) through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope. Our previous studies in Saccharomyces cerevisiae defined an in vivo role for inositol hexakisphosphate (InsP6) and NPC-associated Gle1 in mRNA export. Here, we show that Gle1 and InsP6 act together to stimulate the RNA-dependent ATPase activity of the essential DEAD-box protein Dbp5. Overexpression of DBP5 specifically suppressed mRNA export and growth defects of an ipk1 nup42 mutant defective in InsP6 production and Gle1 localization. In vitro kinetic analysis showed that InsP6 significantly increased Dbp5 ATPase activity in a Gle1-dependent manner and lowered the effective RNA concentration for half-maximal ATPase activity. Gle1 alone had minimal effects. Maximal InsP6 binding required both Dbp5 and Gle1. It has been suggested that Dbp5 requires unidentified cofactors. We now propose that Dbp5 activation at NPCs requires Gle1 and InsP6. This would facilitate spatial control of the remodelling of mRNP protein composition during directional transport and provide energy to power transport cycles.  相似文献   

2.
The unidirectional translocation of messenger RNA (mRNA) through the aqueous channel of the nuclear pore complex (NPC) is mediated by interactions between soluble mRNA export factors and distinct binding sites on the NPC. At the cytoplasmic side of the NPC, the conserved mRNA export factors Gle1 and inositol hexakisphosphate (IP6) play an essential role in mRNA export by activating the ATPase activity of the DEAD-box protein Dbp5, promoting localized messenger ribonucleoprotein complex remodeling, and ensuring the directionality of the export process. In addition, Dbp5, Gle1, and IP6 are also required for proper translation termination. However, the specificity of the IP6-Gle1 interaction in vivo is unknown. Here, we characterize the biochemical interaction between Gle1 and IP6 and the relationship to Dbp5 binding and stimulation. We identify Gle1 residues required for IP6 binding and show that these residues are needed for IP6-dependent Dbp5 stimulation in vitro. Furthermore, we demonstrate that Gle1 is the primary target of IP6 for both mRNA export and translation termination in vivo. In Saccharomyces cerevisiae cells, the IP6-binding mutants recapitulate all of the mRNA export and translation termination defects found in mutants depleted of IP6. We conclude that Gle1 specifically binds IP6 and that this interaction is required for the full potentiation of Dbp5 ATPase activity during both mRNA export and translation termination.  相似文献   

3.
The mRNA lifecycle is driven through spatiotemporal changes in the protein composition of mRNA particles (mRNPs) that are triggered by RNA‐dependent DEAD‐box protein (Dbp) ATPases. As mRNPs exit the nuclear pore complex (NPC) in Saccharomyces cerevisiae, this remodeling occurs through activation of Dbp5 by inositol hexakisphosphate (IP6)‐bound Gle1. At the NPC, Gle1 also binds Nup42, but Nup42's molecular function is unclear. Here we employ the power of structure‐function analysis in S. cerevisiae and human (h) cells, and find that the high‐affinity Nup42‐Gle1 interaction is integral to Dbp5 (hDDX19B) activation and efficient mRNA export. The Nup42 carboxy‐terminal domain (CTD) binds Gle1/hGle1B at an interface distinct from the Gle1‐Dbp5/hDDX19B interaction site. A nup42‐CTD/gle1‐CTD/Dbp5 trimeric complex forms in the presence of IP6. Deletion of NUP42 abrogates Gle1‐Dbp5 interaction, and disruption of the Nup42 or IP6 binding interfaces on Gle1/hGle1B leads to defective mRNA export in S. cerevisiae and human cells. In vitro, Nup42‐CTD and IP6 stimulate Gle1/hGle1B activation of Dbp5 and DDX19B recombinant proteins in similar, nonadditive manners, demonstrating complete functional conservation between humans and S. cerevisiae. Together, a highly conserved mechanism governs spatial coordination of mRNP remodeling during export. This has implications for understanding human disease mutations that perturb the Nup42‐hGle1B interaction.   相似文献   

4.
5.
The DEAD-box RNA helicase Dbp5 is an essential and conserved mRNA export factor which functions in the ATP dependent remodeling of RNA/protein complexes. As such it displaces mRNA bound proteins at the cytoplasmic site of the nuclear pore complex. For the regulation of its RNA-dependent ATPase activity during late steps of nuclear transport, Dbp5 requires the nucleoporin Nup159 and its cofactors Gle1 and IP6. In addition to its role in mRNA export, a second important function of Dbp5 was identified in translation termination, where it acts together with eRF1 once the translation machinery has reached the stop codon. Similar to mRNA export, this function also requires Gle1–IP6, however, the counterpart of Nup159 is still missing. Potential other functions of the nucleo-cytoplasmic protein Dbp5 are discussed as well as its substrate specificity and details in its regulatory cycle that are based on recent biochemical and structural characterization. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

6.
Gle1p is an essential, nuclear pore complex (NPC)-associated RNA export factor. In a screen for high copy suppressors of a GLE1 mutant strain, we identified the FG-nucleoporin Rip1p and the DEAD-box protein Rat8p/Dbp5p, both of which have roles in RNA export; we also found Ymr255p/Gfd1p, a novel inessential protein. All three high copy suppressors interact with the C-terminal domain of Gle1p; immunoelectron microscopy localizations indicate that Gle1p, Rip1p and Rat8p/Dbp5p are present on the NPC cytoplasmic fibrils; Rip1p was also found within the nucleoplasm and on the nuclear baskets. In vivo localizations support the hypothesis that Rip1p contributes to the association of Gle1p with the pore and that Gle1p, in turn, provides a binding site for Rat8p/Dbp5p at the NPC. These data are consistent with the view that Gle1p, Rip1p, Rat8p/Dbp5p and Ymr255p/Gfd1p associate on the cytoplasmic side of the NPC to act in a terminal step of RNA export. We also describe a human functional homologue of Rip1p, called hCG1, which rescues Rip1p function in yeast, consistent with the evolutionary conservation of this NPC-associated protein.  相似文献   

7.
The DEAD-box protein Dbp5 is essential for RNA export, which involves regulation by the nucleoporins Gle1 and Nup159 at the cytoplasmic face of the nuclear pore complex (NPC). Mechanistic understanding of how these nucleoporins regulate RNA export requires analyses of the intrinsic and activated Dbp5 ATPase cycle. Here, kinetic and equilibrium analyses of the Saccharomyces cerevisiae Gle1-activated Dbp5 ATPase cycle are presented, indicating that Gle1 and ATP, but not ADP-Pi or ADP, binding to Dbp5 are thermodynamically coupled. As a result, Gle1 binds Dbp5-ATP > 100-fold more tightly than Dbp5 in other nucleotide states and Gle1 equilibrium binding of ATP to Dbp5 increases >150-fold via slowed ATP dissociation. Second, Gle1 accelerated Dbp5 ATPase activity by increasing the rate-limiting Pi release rate constant ∼20-fold, which remains rate limiting. These data show that Gle1 activates Dbp5 by modulating ATP binding and Pi release. These Gle1 activities are expected to facilitate ATPase cycling, ensuring a pool of ATP bound Dbp5 at NPCs to engage RNA during export. This work provides a mechanism of Gle1-activation of Dbp5 and a framework to understand the joint roles of Gle1, Nup159, and other nucleoporins in regulating Dbp5 to mediate RNA export and other Dbp5 functions in gene expression.  相似文献   

8.
Nuclear export of mRNA is mediated by interactions between soluble factors and nuclear pore complex (NPC) proteins. In Saccharomyces cerevisiae, Nab2 is an essential RNA-binding protein that shuttles between the nucleus and cytoplasm. The mechanism for trafficking of Nab2-bound mRNA through the NPC has not been defined. Gle1 is also required for mRNA export, and Gle1 interactions with NPC proteins, the RNA helicase Dbp5, and Gfd1 have been reported. Here we report that Nab2, Gfd1, and Gle1 associate in a complex. By using immobilized recombinant Gfd1, Nab2 was isolated from total yeast lysate. A similar biochemical assay with immobilized recombinant Nab2 resulted in coisolation of Gfd1 and Gle1. A Nab2-Gfd1 complex was also identified by coimmunoprecipitation from yeast lysates. In vitro binding assays with recombinant proteins revealed a direct association between Nab2 and Gfd1, and two-hybrid assays delineated Gfd1 binding to the N-terminal Nab2 domain. This N-terminal Nab2 domain is distinct from its RNA binding domains suggesting Nab2 could bind Gfd1 and RNA simultaneously. As Nab2 export was blocked in a gle1 mutant at the restrictive temperature, we propose a model wherein Gfd1 serves as a bridging factor between Gle1 and Nab2-bound mRNA during export.  相似文献   

9.
DEAD-box protein (Dbp) family members are essential for gene expression; however, their precise roles and regulation are not fully defined. During messenger (m)RNA export, Gle1 bound to inositol hexakisphosphate (IP(6)) acts via Dbp5 to facilitate remodeling of mRNA-protein complexes. In contrast, here we define a novel Gle1 role in translation initiation through regulation of a different DEAD-box protein, the initiation factor Ded1. We find that Gle1 physically and genetically interacts with Ded1. Surprisingly, whereas Gle1 stimulates Dbp5, it inhibits Ded1 ATPase activity in vitro, and IP(6) does not affect this inhibition. Functionally, a gle1-4 mutant specifically suppresses initiation defects in a ded1-120 mutant, and ded1 and gle1 mutants have complementary perturbations in AUG start site recognition. Consistent with this role in initiation, Gle1 inhibits translation in vitro in competent extracts. These results indicate that Gle1 has a direct role in initiation and negatively regulates Ded1. Together, the differential regulation of two distinct DEAD-box proteins by a common factor (Gle1) establishes a new paradigm for controlling gene expression and coupling translation with mRNA export.  相似文献   

10.
C A Hodge  H V Colot  P Stafford    C N Cole 《The EMBO journal》1999,18(20):5778-5788
In a screen for temperature-sensitive mutants of Saccharomyces cerevisiae defective for mRNA export, we previously identified the essential DEAD-box protein Dbp5p/Rat8p and the nucleoporin Rat7p/Nup159p. Both are essential for mRNA export. Here we report that Dbp5p and Rat7p interact through their Nterminal domains. Deletion of this portion of Rat7p (Rat7pDeltaN) results in strong defects in mRNA export and eliminates association of Dbp5p with nuclear pores. Overexpression of Dbp5p completely suppressed the growth and mRNA export defects of rat7DeltaN cells and resulted in weaker suppression in cells carrying rat7-1 or the rss1-37 allele of GLE1. Dbp5p interacts with Gle1p independently of the N-terminus of Dbp5p. Dbp5p shuttles between nucleus and cytoplasm in an Xpo1p-dependent manner. It accumulates in nuclei of xpo1-1 cells and in cells with mutations affecting Mex67p (mex67-5), Gsp1p (Ran) or Ran effectors. Overexpression of Dbp5p prevents nuclear accumulation of mRNA in xpo1-1 cells, but does not restore growth, suggesting that the RNA export defect of xpo1-1 cells may be indirect. In a screen for high-copy suppressors of the rat8-2 allele of DBP5, we identified YMR255w, now called GFD1. Gfd1p is not essential, interacts with Gle1p and Rip1p/Nup42p, and is found in the cytoplasm and at the nuclear rim.  相似文献   

11.
Kutay U  Panse VG 《Cell》2008,134(4):564-566
During nuclear export, Gle1 (the nuclear-pore-associated mRNA export factor) activates the DEAD-box protein Dbp5 to remodel exported mRNA-protein complexes on the cytoplasmic face of the nuclear pore complex. In this issue, Bolger et al. (2008) now report additional roles for Gle1 in translation initiation and termination.  相似文献   

12.
Nuclear pore complexes (NPCs) play an essential role in RNA export. Nucleoporins required for mRNA export in Saccharomyces cerevisiae are found in the Nup84p and Nup82p subcomplexes of the NPC. The Nup82p subcomplex contains Nup82p, Rat7p/Nup159p, Nsp1p, Gle1p/Rss1p, and Rip1p/Nup42p and is found only on the cytoplasmic face of NPCs. Both Rat7p and Gle1p contain binding sites for Rat8p/Dbp5p, an essential DEAD box protein and putative RNA helicase. Rip1p interacts directly with Gle1p and is the only protein known to be essential for mRNA export after heat shock but not under normal growth conditions. We report that in cells lacking Rip1p, both Gle1p and Rat8p dissociate from NPCs following heat shock at 42 degrees C. Rat8p but not Gle1p was retained at NPCs if rip1Delta cells were first shifted to 37 degrees C and then to 42 degrees C, and this was correlated with preserving mRNA export in heat-shocked rip1Delta cells. Export following ethanol shock was less dependent on the presence of Rip1p. Exposure to 10% ethanol led to dissociation of Rat8p from NPCs in both wild-type and rip1Delta cells. Following this treatment, Rat8p was primarily nuclear in wild-type cells but primarily cytoplasmic in rip1Delta cells. We also determined that efficient export of heat shock mRNA after heat shock depends upon a novel 6-amino-acid element within Rat8p. This motif is not required under normal growth conditions or following ethanol shock. These studies suggest that the molecular mechanism responsible for the defect in export of heat shock mRNAs in heat-shocked rip1Delta cells is dissociation of Rat8p from NPCs. These studies also suggest that both nuclear pores and Rat8p have features not required for mRNA export in growing cells but which enhance the ability of mRNAs to be exported following heat shock.  相似文献   

13.
Eukaryotic gene expression requires the export of mRNA from the nucleus to the cytoplasm. The DEAD box protein Dbp5p is an essential export factor conserved from yeast to man. A fraction of Dbp5p forms a complex with nucleoporins of the cytoplasmic filaments of the nuclear pore complex. Gfd1p was identified originally as a multicopy suppressor of the rat8-2 ts allele of DBP5. Here we reported that Dbp5p and Gfd1p interact with Zds1p, a protein previously identified as a multicopy suppressor in several yeast genetic screens. By using the two-hybrid system, we showed that Zds1p interacts in vivo with both Gfd1p and Dbp5p. In vitro binding experiments revealed that Gfd1p and Dbp5p bind directly to the C-terminal part of Zds1p. In addition, ZDS1 interacted genetically with mutant alleles of genes encoding key factors in mRNA export, including DBP5 and MEX67. Furthermore, deletion of ZDS1 or of both ZDS1 and the closely related ZDS2 exacerbated the poly(A)+ export defects shown by dbp5-2 and mex67-5 mutants. We proposed that Zds1p associates with the complex formed by Dbp5p, Gfd1p, and nucleoporins at the cytosolic fibrils of the nuclear pore complex and is required for optimal mRNA export.  相似文献   

14.
Stewart M 《Molecular cell》2007,25(3):327-330
Export of mature mRNA to the cytoplasm is the culmination of the nuclear portion of eukaryotic gene expression. After transport-competent mature mRNP export complexes are formed in the nucleus, their passage through nuclear pore complexes (NPCs) is facilitated by the Mex67:Mtr2 heterodimer. At the NPC cytoplasmic face, mRNP remodeling prevents its return to the nucleus and so functions as a molecular ratchet imposing directionality on transport. In budding yeast, recent work suggests that the DEAD-box helicase Dbp5 remodels mRNPs at the NPC cytoplasmic face by removing Mex67 and that the Dbp5 ATPase is activated by Gle1 and inositol hexaphosphate (IP(6)).  相似文献   

15.
Bolger TA  Folkmann AW  Tran EJ  Wente SR 《Cell》2008,134(4):624-633
Gene expression requires proper messenger RNA (mRNA) export and translation. However, the functional links between these consecutive steps have not been fully defined. Gle1 is an essential, conserved mRNA export factor whose export function is dependent on the small molecule inositol hexakisphosphate (IP(6)). Here, we show that both Gle1 and IP(6) are required for efficient translation termination in Saccharomyces cerevisiae and that Gle1 interacts with termination factors. In addition, Gle1 has a conserved physical association with the initiation factor eIF3, and gle1 mutants display genetic interactions with the eIF3 mutant nip1-1. Strikingly, gle1 mutants have defects in initiation, whereas strains lacking IP(6) do not. We propose that Gle1 functions together with IP(6) and the DEAD-box protein Dbp5 to regulate termination. However, Gle1 also independently mediates initiation. Thus, Gle1 is uniquely positioned to coordinate the mRNA export and translation mechanisms. These results directly impact models for perturbation of Gle1 function in pathophysiology.  相似文献   

16.
Dbp5, DDX19 in humans, is an essential DEAD-box protein involved in mRNA export, which has also been linked to other cellular processes, including rRNA export and translation. Dbp5 ATPase activity is regulated by several factors, including RNA, the nucleoporin proteins Nup159 and Gle1, and the endogenous small-molecule inositol hexakisphosphate (InsP6). To better understand how these factors modulate Dbp5 activity and how this modulation relates to in vivo RNA metabolism, a detailed characterization of the Dbp5 mechanochemical cycle in the presence of those regulators individually or together is necessary. In this study, we test the hypothesis that Nup159 controls the ADP-bound state of Dbp5. In addition, the contributions of Mg2+ to the kinetics and thermodynamics of ADP binding to Dbp5 were assessed. Using a solution based in vitro approach, Mg2+ was found to slow ADP and ATP release from Dbp5 and increased the overall ADP and ATP affinities, as observed with other NTPases. Furthermore, Nup159 did not accelerate ADP release, while Gle1 actually slowed ADP release independent of Mg2+. These findings are not consistent with Nup159 acting as a nucleotide exchange factor to promote ADP release and Dbp5 ATPase cycling. Instead, in the presence of Nup159, the interaction between Gle1 and ADP-bound Dbp5 was found to be reduced by ~ 18-fold, suggesting that Nup159 alters the Dbp5–Gle1 interaction to aid Gle1 release from Dbp5.  相似文献   

17.
Nuclear export of mRNA in eukaryotic cells is mediated by soluble transport factors and components of the nuclear pore complex (NPC). The cytoplasmically oriented nuclear pore protein Nup159 plays a critical role in mRNA export through its conserved N-terminal domain (NTD). Here, we report the crystal structure of the Nup159 NTD, refined to 2.5 A. The structure reveals an unusually asymmetric seven-bladed beta-propeller that is structurally conserved throughout eukarya. Using structure-based conservation analysis, we have targeted specific surface residues for mutagenesis. Residue substitutions in a conserved loop of the NTD abolish in vitro binding to Dbp5, a DEAD box helicase required for mRNA export. In vivo, these mutations cause Dbp5 mislocalization and block mRNA export. These findings suggest that the Nup159 NTD functions in mRNA export as a binding platform, tethering shuttling Dbp5 molecules at the nuclear periphery and locally concentrating this mRNA remodeling factor at the cytoplasmic face of the NPC.  相似文献   

18.
Our previous studies have focused on a family of Saccharomyces cerevisiae nuclear pore complex (NPC) proteins that contain domains composed of repetitive tetrapeptide glycine-leucine-phenylalanine-glycine (GLFG) motifs. We have previously shown that the GLFG regions of Nup116p and Nup100p directly bind the karyopherin transport factor Kap95p during nuclear protein import. In this report, we have further investigated potential roles for the GLFG region in mRNA export. The subcellular localizations of green fluorescent protein (GFP)-tagged mRNA transport factors were individually examined in yeast cells overexpressing the Nup116-GLFG region. The essential mRNA export factors Mex67-GFP, Mtr2-GFP, and Dbp5-GFP accumulated in the nucleus. In contrast, the localizations of Gle1-GFP and Gle2-GFP remained predominantly associated with the NPC, as in wild type cells. The localization of Kap95p was also not perturbed with GLFG overexpression. Coimmunoprecipitation experiments from yeast cell lysates resulted in the isolation of a Mex67p-Nup116p complex. Soluble binding assays with bacterially expressed recombinant proteins confirmed a direct interaction between Mex67p and the Nup116-GLFG or Nup100-GLFG regions. Mtr2p was not required for in vitro binding of Mex67p to the GLFG region. To map the Nup116-GLFG subregion(s) required for Kap95p and/or Mex67p association, yeast two-hybrid analysis was used. Of the 33 Nup116-GLFG repeats that compose the domain, a central subregion of nine GLFG repeats was sufficient for binding either Kap95p or Mex67p. Interestingly, the first 12 repeats from the full-length region only had a positive interaction with Mex67p, whereas the last 12 were only positive with Kap95p. Thus, the GLFG domain may have the capacity to bind both karyopherins and an mRNA export factor simultaneously. Taken together, our in vivo and in vitro results define an essential role for a direct Mex67p-GLFG interaction during mRNA export.  相似文献   

19.
Messenger RNA (mRNA) export involves the unidirectional passage of ribonucleoprotein particles (RNPs) through nuclear pore complexes (NPCs), presumably driven by the ATP-dependent activity of the DEAD-box protein Dbp5. Here we report that Dbp5 functions as an RNP remodeling protein to displace the RNA-binding protein Nab2 from RNA. Strikingly, the ADP-bound form of Dbp5 and not ATP hydrolysis is required for RNP remodeling. In vivo studies with nab2 and dbp5 mutants show that a Nab2-bound mRNP is a physiological Dbp5 target. We propose that Dbp5 functions as a nucleotide-dependent switch to control mRNA export efficiency and release the mRNP from the NPC.  相似文献   

20.
The export of bulk poly(A)(+) mRNA is blocked under heat-shocked (42 degrees C) conditions in Saccharomyces cerevisiae. We found that an mRNA export factor Gle2p rapidly dissociated from the nuclear envelope and diffused into the cytoplasm at 42 degrees C. However, in exponential phase cells pretreated with mild heat stress (37 degrees C for 1 h), Gle2p did not dissociate at 42 degrees C, and the export of bulk poly(A)(+) mRNA continued. Cells in stationary phase also continued with the export of bulk poly(A)(+) mRNA at 42 degrees C without the dissociation of Gle2p from the nuclear envelope. The dissociation of Gle2p was caused by increased membrane fluidity and correlated closely with blocking of the export of bulk poly(A)(+) mRNA. Furthermore, the mutants gle2Delta and rip1Delta could not induce such an adaptation of the export of bulk poly(A)(+) mRNA to heat shock. Our findings indicate that Gle2p plays a crucial role in mRNA export especially under heat-shocked conditions. Our findings also indicate that the nuclear pore complexes that Gle2p constitutes need to be stabilized for the adaptation and that the increased membrane integrity caused by treatment with mild heat stress or by survival in stationary phase is likely to contribute to the stabilization of the association between Gle2p and the nuclear pore complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号