首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterobifunctional block copolymers of poly(ethylene glycol) (PEG) and poly(N-isopropylacrylamide) (PNIPAM) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM using a macromolecular trithiocarbonate PEG-based chain transfer agent. The polymerization showed all the expected features of living radical polymerization and allowed the synthesis of copolymers with different lengths of the PNIPAM block. The synthesized block copolymers contained a carboxylic acid group from L-lysine at the focal point and a trithiocarbonate group at the terminus of the PNIPAM block. The trithiocarbonate functionality was converted into a thiol group and used for conjugation of biotin to the end of the PNIPAM block. The copolymers exhibited temperature-dependent association behavior in aqueous solution with a phase transition of approximately 32 degrees C. The described heterobifunctional block copolymers show promise for surface modifications with the potential for stimulus-controlled surface presentation of ligands attached to the terminus of the PNIPAM block.  相似文献   

2.
RAFT polymerization successfully controlled the synthesis of phosphonium-based AB diblock copolymers for nonviral gene delivery. A stabilizing block of either oligo(ethylene glycol(9)) methyl ether methacrylate or 2-(methacryloxy)ethyl phosphorylcholine provided colloidal stability, and the phosphonium-containing cationic block of 4-vinylbenzyltributylphosphonium chloride induced electrostatic nucleic acid complexation. RAFT polymerization generated well-defined stabilizing blocks (M(n) = 25000 g/mol) and subsequent chain extension synthesized diblock copolymers with DPs of 25, 50, and 75 for the phosphonium-containing block. All diblock copolymers bound DNA efficiently at ± ratios of 1.0 in H(2)O, and polyplexes generated at ± ratios of 2.0 displayed hydrodynamic diameters between 100 and 200 nm. The resulting polyplexes exhibited excellent colloidal stability under physiological salt or serum conditions, and they maintained constant hydrodynamic diameters over 24 h. Cellular uptake studies using Cy5-labeled DNA confirmed reduced cellular uptake in COS-7 and HeLa cells and, consequently, resulted in low transfection in these cell lines. Serum transfection in HepaRG cells, which are a predictive cell line for in vivo transfection studies, showed successful transfection using all diblock copolymers with luciferase expression on the same order of magnitude as Jet-PEI. All diblock copolymers exhibited low cytotoxicity (>80% cell viability). Promising in vitro transfection and cytotoxicity results suggest future studies involving the in vivo applicability of these phosphonium-based diblock copolymer delivery vehicles.  相似文献   

3.
Well-defined polymer scaffolds convertible to (multi)functional polymer structures via selective and efficient modifications potentially provide an easy, versatile, and useful approach for a wide variety of applications. Considering this, a homopolymer scaffold, poly(pyridyldisulfide ethylmethacrylate) (poly(PDSM)), having pendant groups selectively reactive with thiols, was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Soluble polymers with controlled molecular weights and narrow PDIs were generated efficiently. The versatility of the scaffold to generate random co- and ter-polymers combining multiple functionalities with controlled-composition was shown by separate and simultaneous conjugation of different mercapto-compounds, including a tripeptide in one-step. Conversion of water-insoluble scaffold to peptide-containing water-soluble copolymers was observed to yield nanometer-size particles with narrow polydispersity. The overall results suggest that the well-defined PDSM homopolymer scaffold generated via RAFT polymerization can be a versatile building block for generation of new structures having potential for drug delivery applications via a straightforward synthetic approach.  相似文献   

4.
Telechelic water-soluble HPMA copolymers and HPMA copolymer-doxorubicin (DOX) conjugates have been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA) that contains an enzymatically degradable oligopeptide sequence. Postpolymerization aminolysis followed by chain extension with a bis-maleimide resulted in linear high molecular weight multiblock HPMA copolymer conjugates. These polymers are enzymatically degradable; in addition to releasing the drug (DOX), the degradation of the polymer backbone resulted in products with molecular weights similar to the starting material and below the renal threshold. The new multiblock HPMA copolymers hold potential as new carriers of anticancer drugs.  相似文献   

5.
Block copolymers poly(2-(dimethylamino) ethyl methacrylate)-b-poly(polyethylene glycol methacrylate) (PDMAEMA-b-P(PEGMA)) were prepared via reversible addition fragmentation chain transfer polymerization (RAFT). The polymerization was found to proceed with the expected living behavior resulting in block copolymers with varying block sizes of low polydispersity (PDI <1.3). The resulting block copolymer was self-assembled in an aqueous environment, leading to the formation of pH-responsive micelles. Further stabilization of the micellar system was performed in water using ethylene glycol dimethacrylate and the RAFT process to cross-link the shell. The cross-linked micelle was found to have properties significantly different from those of the uncross-linked block copolymer micelle. While a distinct critical micelle concentration (CMC) was observed using block copolymers, the CMC was absent in the cross-linked system. In addition, a better stability against disintegration was observed when altering the ionic strength such as the absence of changes of the hydrodynamic diameter with increasing NaCl concentration. Both cross-linked and uncross-linked micelles displayed good binding ability for genes. However, the cross-linked system exhibited a slightly superior tendency to bind oligonucleotides. Cytotoxicity tests confirmed a significant improvement of the biocompatibility of the synthesized cross-linked micelle compared to that of the highly toxic PDMAEMA. The cross-linked micelles were taken up by cells without causing any signs of cell damage, while the PDMAEMA homopolymer clearly led to cell death.  相似文献   

6.
Narrowly dispersed, temperature-responsive BAB block copolymers capable of forming physical gels under physiological conditions were synthesized via aqueous reversible addition fragmentation chain transfer (RAFT) polymerization. The use of a difunctional trithiocarbonate facilitates the two-step synthesis of BAB copolymers with symmetrical outer blocks. The outer B blocks of the triblock copolymers consist of poly(N-isopropylacrylamide) (PNIPAM) and the inner A block consists of poly(N,N-dimethylacrylamide). The copolymers form reversible physical gels above the phase transition temperature of PNIPAM at concentrations as low as 7.5 wt % copolymer. Mechanical properties similar to collagen, a naturally occurring polypeptide used as a three-dimensional in vitro cell growth scaffold, have been achieved. Herein, we report the mechanical properties of the gels as a function of solvent, polymer concentration, and inner block length. Structural information about the gels was obtained through pulsed field gradient NMR experiments and confocal microscopy.  相似文献   

7.
8.
Hybrid peptidic-synthetic amphiphilic block copolymers, synthesized by living free radical polymerization (LFRP) on solid support, have been utilized as precursors for nanoscale materials possessing bio-available peptides. LFRP initiators, coupled to the peptide terminus upon the resin, facilitated the growth of homo- and block copolymers via nitroxide mediated radical polymerization (NMRP) or atom transfer radical polymerization (ATRP). Herein, the versatile solid-support synthesis of the antimicrobial peptide tritrpticin, coupling of living free radical polymerization initiators to the peptide-loaded resin, and the controlled radical polymerization of various monomers to yield amphiphilic diblock copolymers are described. Assembly of the peptidic-synthetic block copolymers into micelles and a preliminary assessment of their in vitro biological properties are detailed.  相似文献   

9.
Qin Z  Liu W  Li L  Guo L  Yao C  Li X 《Bioconjugate chemistry》2011,22(8):1503-1512
As alternatives of viral and cationic lipid gene carriers, cationic polymer-based vectors may provide flexible chemistry for the attachment of targeting moieties. In this report, galactosylated N-2-hydroxypropyl methacrylamide-b-N-3-guanidinopropyl methacrylamide block copolymers (galactosylated HPMA-b-GPMA block copolymers, or abbreviated as GHG) were prepared in order to develop hepatocyte targeting gene transfection carriers. The block copolymers were synthesized by aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization of N-2-hydroxypropyl methacrylamide (HPMA) and N-3-aminopropyl methacrylamide (APMA), followed by galactosylation and guanidinylation. The molecular weight of GHG copolymers determined by static light scattering method was in the range from 48?600 to 76?240 g/mol. In addition, the galactose content in the GPMA block in the copolymers was determined to be 6.5-8.0 mol % according to the sulfuric acid method. The GHG copolymers complexed completely with plasmid DNA (pDNA) to show positive zeta-potential values with diameter 100-250 nm from charge ratio of 4, which demonstrated the excellent DNA condensing ability of guanidino groups. Furthermore, the MTT assay data of GHG/pDNA complexes on HepG2 cells and HeLa cells indicated that GHG copolymers had significantly lower cytotoxicity than PEI. In addition, the copolymers with GPMA component from 30.23% showed higher transfection efficiency than PEI at charge ratio of 12 in HepG2 cells. The result revealed that the conjugation of galactose groups in the copolymers brought asialoglycoprotein-receptor (ASGP-R) mediated transfection. The employing of HPMA component decreased the aggregation of protein in transfection presence of serum. The GHG copolymers combined the advantages of galactose moieties, guanidino groups, and HPMA component might show potential in safe hepatocyte targeting gene therapy.  相似文献   

10.
To realize safer and effective drug administration, novel well-defined and biocompatible amphiphilic block copolymers containing phospholipid polymer sequences were synthesized. At first, the homopolymer of 2-methacryloyloxyethylphosphorylcholine (MPC) was synthesized in water by reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. The "living" polymerization was confirmed by the fact that the number-average molecular weight increased linearly with monomer conversion while the molecular weight distribution remained narrow independent of the conversion. The poly(MPC) thus prepared is end-capped with a dithioester moiety. Using the dithioester-capped poly(MPC) as a macro chain transfer agent, AB diblock copolymers of MPC and n-butyl methacrylate (BMA) were synthesized. Associative properties of the amphiphilic block copolymer (pMPC(m)-BMA(n)) with varying poly(BMA) block lengths were investigated using NMR, fluorescence probe, static light scattering (SLS), and quasi-elastic light scattering (QELS) techniques. Proton NMR data in D2O indicated highly restricted motions of the n-butyl moieties, arising from hydrophobic associations of poly(BMA) blocks. Fluorescence spectra of N-phenyl-1-naphthylamine indicated that the probes were solubilized in the polymer micelles in water. The formation of polymer micelles comprising a core with poly(BMA) blocks and shell with hydrophilic poly(MPC) blocks was suggested by SLS and QELS data. The size and mass of the micelle increased with increasing poly(BMA) block length. With an expectation of a pharmaceutical application of pMPC(m)-BMA(n), solubilization of a poorly water-soluble anticancer agent, paclitaxel (PTX), was investigated. PTX dissolved well in aqueous solutions of pMPC(m)-BMA(n) as compared with pure water, implying that PTX is incorporated into the hydrophobic core of the polymer micelle. Since excellent biocompatible poly(MPC) sequences form an outer shell of the micelle, pMPC(m)-BMA(n) may find application as a promising reagent to make a good formulation with a hydrophobic drug.  相似文献   

11.
Wang Y  Hong CY  Pan CY 《Biomacromolecules》2012,13(8):2585-2593
Photo- and pH-responsive amphiphilic hyperbranched star copolymers, poly(6-O-methacryloyl-1,2;3,4-di-O-isopropylidene-d-galactopyranose)[poly(2-(N,N-dimethylaminoethyl) methacrylate)-co-poly(1'-(2-methacryloxyethyl)-3',3'-dimethyl-6-nitro-spiro(2H-1-benzo-pyran-2,2'-indoline))](n)s [HPMAlpGP(PDMAEMA-co-PSPMA)(n)], were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of the DMAEMA and the SPMA using hyperbranched PMAlpGP as a macro RAFT agent. In aqueous solution, the copolymers self-assembled to form core-shell micelles with HPMAlpGP core and PDMAEMA-co-PSPMA shell. The hydrophobic fluorescent dye nitrobenzoxadiazolyl derivative (NBD) was loaded into the spiropyran-containing micelles. The obtained micelles not only have the photochromic properties, but also modulate the fluorescence of NBD through fluorescence resonance energy transfer (FRET), which was also observed in living cells. Slight fluorescence intensity decrease of the spiropyran in merocyanine (ME) form was observed after five UV-visible light irradiation cycles. The cytotoxicity of the HPMAlpGP(PDMAEMA-co-PSPMA)(n) micelles was lower than that of 25k PEI. All the results revealed that these photoresponsive nanoparticles are a good candidate for cell imaging and may find broad applications in biological areas such as biological diagnosis, imaging, and detection.  相似文献   

12.
The facile synthesis of biocompatible and nontoxic gene delivery vectors has been the focus of research in recent years due to the high potential in treating genetic diseases. 2-Methacryloxyethyl phosphorylcholine (MPC) copolymers were recently studied for their ability to produce nontoxic and biocompatible materials. The synthesis of well-defined and water-soluble MPC polymer based cationic vectors for gene delivery purposes was therefore attractive, due to the potential excellent biocompatibility of the resulting copolymers. Herein, cationic MPC copolymers of varying architectures (block versus random) were produced by the reversible addition--fragmentation chain transfer (RAFT) polymerization technique. The copolymers produced were evaluated for their gene delivery efficacy in the presence and absence of serum. It was found that copolymer architectures and molecular weights do affect their gene delivery efficacy. The statistical copolymers produced larger particles, and showed poor gene transfection efficiency as compared to the diblock copolymers. The diblock copolymers served as efficient gene delivery vectors, in both the presence and absence of serum in vitro. To the best of our knowledge, this is the first report where the effect of architecture of MPC based copolymer on gene delivery efficacy has been studied.  相似文献   

13.
The temperature-responsive chitosan was synthesized by free radical polymerization of N-isopropylacrylamide (NIPAM) at 60 degrees C in the presence of RAFT-chitosan agent. The chitosan was subsequently modified with phthalic anhydride and with S-1-dodecyl-S'-(alpha,alpha'-dimethyl-alpha'-acetic acid) trithiocarbonate to serve as reversible addition fragmentation chain transfer (RAFT) agent. The polymerization results show that the graft polymerization proceeded via RAFT process, while the "well-defined" graft polymers were successfully synthesized. The temperature played an important role on the self-assembly in H2O dispersion and the morphologies of chitosan-g-PNIPAMs. To our knowledge, this is the first thermosensitive chitosan prepared from controlled graft modification of chitosan by RAFT polymerization.  相似文献   

14.
Receptor-mediated, cell-specific delivery of siRNA enables silencing of target genes in specific tissues, opening the door to powerful therapeutic options for a multitude of diseases. However, the development of delivery systems capable of targeted and effective siRNA delivery typically requires multiple steps and the use of sophisticated, orthogonal chemistries. Previously, we developed diblock copolymers consisting of dimethaminoethyl methacrylate-b-dimethylaminoethyl methacrylate-co-butyl methacrylate-co-propylacrylic acid as potent siRNA delivery systems that protect siRNA from enzymatic degradation and enable its cytosolic delivery through pH-responsive, endosomolytic behavior. (1, 2) These architectures were polymerized using a living radical polymerization method, specifically reversible addition-fragmentation chain transfer (RAFT) polymerization, which employs a chain transfer agent (CTA) to modulate the rate of reaction, resulting in polymers with low polydispersity and telechelic chain ends reflecting the chemistry of the CTA. Here we describe the straightforward, facile synthesis of a folate receptor-targeted diblock copolymer siRNA delivery system because the folate receptor is an attractive target for tumor-selective therapies as a result of its overexpression in a number of cancers. Specifically, we detail the de novo synthesis of a folate-functionalized CTA, use the folate-CTA for controlled polymerizations of diblock copolymers, and demonstrate efficient, specific cellular folate receptor interaction and in vitro gene knockdown using the folate-functionalized polymer.  相似文献   

15.
A novel carboxyl-trithiocarbonate functionalized polymer with a highly selective antitumor activity was synthesized by a reversible addition-fragmentation chain transfer (RAFT) polymerization of maleic anhydride (MA) with benzoyl peroxide as an initiator and S-1-dodecyl-S-(α,α'-dimethyl-α″-acetic acid)trithiocarbonate as a RAFT agent with the aim to design and synthesize an effective anticancer agent with minimum side effects. The structure, molecular weights and composition of synthesized polymers were investigated by (1)H ((13)C) NMR, MALDI-TOF-MS and GPC analyzes. It was demonstrated that RAFT polymerization of MA was accompanied by a partially controlled decarboxylation of anhydride units and the formation of conjugated double bond fragments in backbone macromolecular chains. The mechanism of interaction of pristine RAFT agent and PMA-RAFT polymer with cancer (HeLa human cervix carcinoma) and normal (L929 Fibroblast) cells was investigated by using a combination of chemical, biochemical, statistical, spectroscopic (SEM and fluorescence inverted microscope) and real-time analysis (RTCA) methods. PMA-RAFT exhibited higher and selective cytotoxicity, apoptotic and necrotic effects toward HeLa cells at relatively low concentrations (around 7.5-75μgmL(-1), IC(50)=11.183μgmL(-1)) and toward Fibroblast cells at high concentrations (IC(50)>100μgmL(-1)). The observed highly selective antitumor activity render PMA-RAFT polymers as promising candidates for the utilization in cancer chemotherapy.  相似文献   

16.
Poly(N-isopropyl acrylamide) is a thermoresponsive polymer that has been widely investigated for drug delivery. Herein, we report conditions facilitating the controlled, room-temperature RAFT polymerization of N-isopropylacrylamide (NIPAM). The key to success is the appropriate choice of both a suitable RAFT chain transfer agent (CTA) and initiating species. We show that the use of 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid, a trithiocarbonate RAFT CTA, in conjunction with the room-temperature azo initiator 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), in DMF, at 25 degrees C, yields conditions leading to NIPAM homopolymerizations which bear all of the characteristics of a controlled/"living" polymerization. We also demonstrate facile size exclusion chromatographic analysis of PNIPAM samples in DMF at 60 degrees C, directly on aliquots withdrawn during the polymerizations, which avoids the problems previously reported in the literature.  相似文献   

17.
A strategy is presented that exploits the ability of synthetic polymers of different nature to disturb the strong self-assembly capabilities of amyloid based β-sheet forming peptides. Following a convergent approach, the peptides of interest were synthesized via solid-phase peptide synthesis (SPPS) and the polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by a copper(I) catalyzed azide-alkyne cycloaddition (CuAAC) to generate the desired peptide-polymer conjugates. This study focuses on a modified version of the core sequence of the β-amyloid peptide (Aβ), Aβ(16-20) (KLVFF). The influence of attaching short poly(N-isopropylacrylamide) and poly(hydroxyethylacrylate) to the peptide sequences on the self-assembly properties of the hybrid materials were studied via infrared spectroscopy, TEM, circular dichroism and SAXS. The findings indicate that attaching these polymers disturbs the strong self-assembly properties of the biomolecules to a certain degree and permits to influence the aggregation of the peptides based on their β-sheets forming abilities. This study presents an innovative route toward targeted and controlled assembly of amyloid-like fibers to drive the formation of polymeric nanomaterials.  相似文献   

18.
Lei Z  Bi S 《Journal of biotechnology》2007,128(1):112-119
Well-defined amphiphilic block copolymers poly(styrene-b-acrylic acid) (PS-b-PAA) with controlled block length were synthesized using atom transfer radical polymerization (ATRP). Pectinase enzyme was immobilized on the well-defined amphiphilic block copolymers PS-b-PAA. The carboxyl groups on the amphiphilic PS-b-PAA diblock copolymers present a very simple, mild, and time-saving process for enzyme immobilization. Various characteristics of immobilized pectinase such as the pH and temperature stability, thermal stability, and storage stability were valuated. Among them the pH optimum and temperature optimum of free and immobilized pectinase were found to be pH 6.0 and 65 degrees C.  相似文献   

19.
Zhang L  Liu W  Lin L  Chen D  Stenzel MH 《Biomacromolecules》2008,9(11):3321-3331
A nucleosides containing block copolymer, poly(polyethylene glycol methyl ether methacrylate)- block-poly(5'-O-methacryloyluridine) (PPEGMEMA 30- b-PMAU 80) was self-assembled in aqueous medium and cross-linked via RAFT polymerization at 60 degrees C to afford core-cross-linked micelles exhibiting a PPEGMEMA corona and a polynucleotide core. A disulfide cross-linking agent, bis(2-methacryloyloxyethyl)disulfide, was employed to cross-link the structure via the RAFT process resulting in core-shell nanoparticles, which can degrade under reductive conditions. The resulting core-cross-linked micelles readily hydrolyzed into free block copolymers in the presence of dithiothreitol (DTT) in less than 1 h, depending on the concentration of the reducing agent and the amount of cross-linker in the micelle. A small fraction of permanently cross-linked micelle was found as the result of conventional chain transfer to disulfide containing compounds. A model drug, vitamin B 2, was loaded into the micelle. The loading capacity increased with increasing cross-linking degree. The amount of drug released reached 60-70% after 7 h in the presence of DTT (0.65 mM), while the cross-linked micelle in the absence of dithiothreitol shows only a delayed drug release. Cytotoxicity tests confirmed the biocompatibility of the polymers and the residues after reduction.  相似文献   

20.
Three monomers with 1,3-dicarboxylate functional groups but varying spacer lengths were synthesized via carbon Michael addition using malonate esters and ethylene- (MAETC), butylene- (MABTC), and hexylene (MAHTC) glycol dimethacrylate, respectively. Poly[oligo-(ethylene glycol) methylether methacrylate] (POEGMEMA) was prepared in the presence of a RAFT (reversible addition-fragmentation chain transfer) agent, followed by chain extension with the prepared monomers to generate three different block copolymers (BP-E80, BP-B82, and BP-H79) with similar numbers of repeating units, but various spacer lengths as distinguishing features. Conjugation with platinum drugs created macromolecular platinum drugs resembling carboplatin. The amphiphilic natures of these Pt-containing block copolymers led to the formation micelles in solution. The rate of drug release of all micelles was similar, but a noticeable difference was the increasing stability of the micelle against dissociation with increasing spacer length. The platinum conjugated polymer showed high activity against A549, OVCAR3, and SKOV3 cancer cell lines exceeding the activity of carboplatin, but only the micelle based on the longest spacer had IC(50) values as low as cisplatin. Cellular uptake studies identified a better micelle uptake with increasing micelle stability as a possible reason for lower IC(50) values. The clonogenic assay revealed that micelles loaded with platinum drugs, in contrast to low molecular weight carboplatin, have not only better activity within the frame of a 72 h cell viability study, but also display a longer lasting effect by preventing the colony formation A549 for more than 10 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号