首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Skeletal muscle regeneration comprises several overlapping cellular processes, including inflammation and myogenesis. Prostaglandins (PGs) may regulate muscle regeneration, because they modulate inflammation and are involved in various stages of myogenesis in vitro. PG synthesis is catalyzed by different isoforms of cyclooxygenase (COX), which are inhibited by nonsteroidal anti-inflammatory drugs. Although experiments employing nonsteroidal anti-inflammatory drugs have implicated PGs in tissue repair, how PGs regulate muscle regeneration remains unclear, and the potentially distinct roles of different COX isoforms have not been investigated. To address these questions, a localized freeze injury was induced in the tibialis anterior muscles of mice chronically treated with either a COX-1- or COX-2-selective inhibitor (SC-560 and SC-236, respectively), starting before injury. The size of regenerating myofibers was analyzed at time points up to 5 wk after injury and found to be decreased by SC-236 and in COX-2–/– muscles, but unaffected by SC-560. In contrast, SC-236 had no effect on myofiber growth when administered starting 7 days after injury. The attenuation of myofiber growth by SC-236 treatment and in COX-2–/– muscles is associated with decreases in the number of myoblasts and intramuscular inflammatory cells at early times after injury. Together, these data suggest that COX-2-dependent PG synthesis is required during early stages of muscle regeneration and thus raise caution about the use of COX-2-selective inhibitors in patients with muscle injury or disease. prostaglandins; nonsteroidal anti-inflammatory drugs; muscle growth; inflammation; satellite cells  相似文献   

2.
The aim of this study was to assess cyclooxygenase (COX)-1 and COX-2 expression in skeletal muscle after an ischemia-reperfusion (I/R). Male Sprague-Dawley rats were subjected to unilateral hindlimb ischemia for 2 h and then euthanized after 0, 1, 2, 4, 6, 10, 24, and 72 h of reperfusion. The COX protein and mRNA were assessed in control and injured gastrocnemius muscle. Muscle damage was indirectly determined by plasma creatine kinase activity and edema by weighing wet muscle. Creatine kinase activity in plasma increased as early as 1 h after reperfusion and returned to control levels by 72 h of reperfusion. Edema was observed at 6 and 10 h of reperfusion, but histological investigations showed an absence of tissular inflammatory cell infiltration. COX-1 mRNA was expressed in control muscle and was increased at 72 h of reperfusion, but the levels of associated COX-1 protein detected in control and injured gastrocnemius muscle were similar. COX-2 mRNA was not, or only slightly, detectable in control muscle and after I/R. In contrast, I/R induced major overexpression of COX-2 immunoreactivity at 6 and 10 h of reperfusion with a maximum at 10 h, whereas COX-2 protein was undetectable in control muscle. In conclusion, hindlimb I/R induced a large overexpression of COX-2 but not COX-1 protein between 6 and 10 h after injury. These results suggest a role for COX-2 enzyme in such pathophysiological conditions of the skeletal muscle.  相似文献   

3.
Skeletal muscle injury and repair are complex processes, including well‐coordinated steps of degeneration, inflammation, regeneration, and fibrosis. We have reviewed the recent literature including studies by our group that describe how to modulate the processes of skeletal muscle repair and regeneration. Antiinflammatory drugs that target cyclooxygenase‐2 were found to hamper the skeletal muscle repair process. Muscle regeneration phase can be aided by growth factors, including insulin‐like growth factor‐1 and nerve growth factor, but these factors are typically short‐lived, and thus more effective methods of delivery are needed. Skeletal muscle damage caused by traumatic injury or genetic diseases can benefit from cell therapy; however, the majority of transplanted muscle cells (myoblasts) are unable to survive the immune response and hypoxic conditions. Our group has isolated neonatal skeletal muscle derived stem cells (MDSCs) that appear to repair muscle tissue in a more effective manner than myoblasts, most likely due to their better resistance to oxidative stress. Enhancing antioxidant levels of MDSCs led to improved regenerative potential. It is becoming increasingly clear that stem cells tissue repair by direct differentiation and paracrine effects leading to neovascularization of injured site and chemoattraction of host cells. The factors invoked in paracrine action are still under investigation. Our group has found that angiotensin II receptor blocker (losartan) significantly reduces fibrotic tissue formation and improves repair of murine injured muscle. Based on these data, we have conducted a case study on two hamstring injury patients and found that losartan treatment was well tolerated and possibly improved recovery time. We believe this medication holds great promise to optimize muscle repair in humans. (Part C) 96:82–94, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
目的 研究大鼠骨骼肌损伤后中性粒细胞、巨噬细胞和肌成纤维细胞数量的变化情况,为今后骨骼肌损伤修复的病理学机制研究打下坚实的基础.方法 建立大鼠骨骼肌机械性损伤动物模型,随机分为伤后6h、12h、1d、3d、7d、10d、14d及正常对照组.应用免疫组织荧光染色和免疫组织化学染色,检测大鼠骨骼肌损伤后不同时间点中性粒细胞、巨噬细胞和肌成纤维细胞的数量.结果 伤后6h-12h,损伤区可见中性粒细胞和巨噬细胞浸润,中性粒细胞数量达到高峰.伤后1d,损伤区巨噬细胞数量急剧增加,迅速达到高峰,而中性粒细胞数量开始下降.伤后3d,中性粒细胞和巨噬细胞数量都显著下降.伤后7d,肌成纤维细胞开始出现.到伤后10d-14d,损伤区主要以肌成纤维细胞为主,偶见巨噬细胞.结论 大鼠骨骼肌损伤区中性粒细胞、巨噬细胞和肌成纤维细胞数量呈时间规律性变化,以期为骨骼肌损伤修复的病理学机制研究提供参考资料.  相似文献   

5.
6.
Recent studies have shown that early growth response factor-1 (Egr-1) plays an important role in regulation of inflammation and tissue repair, but little is known about its expression after trauma to skeletal muscles. A preliminary study on time-dependent expression and distribution of Egr-1 was performed by immunohistochemistry, immunofluorescence and Western blotting during skeletal muscle wound healing in rats. An animal model of skeletal muscle contusion was established in 45 Sprague-Dawley male rats. Samples were taken at 6 h, 12 h, 1 day, 3 days, 5 days, 7 days, 10 days, 14 days and 21 days post-injury, respectively (5 rats in each posttraumatic interval). 5 rats were employed as control. In the uninjured controls, Egr-1 positive staining was observed in the sarcoplasm and nuclei of normal myofibers. In wounded specimens, a small number of polymorphonuclear cells (PMNs), a number of mononuclear cells (MNCs), fibroblastic cells (FBCs) and regenerated multinucleated myotubes showed positive reaction for Egr-1 in contused zones. By morphometric analysis, an increase in Egr-1 expression was verified at inflammatory phase after contusion, which reached a peak in the regenerated phase overlapping with the fibrotic phase during skeletal muscle wound healing. The expression tendency was further confirmed by Western blotting assay. By immunofluorescent staining for co-localization, the Egr-1-positive MNCs and FBCs in wounds were identified as macrophages and myofibroblasts. The results demonstrate that the expression of Egr-1 is up-regulated and temporally distributed in certain cell types after trauma to skeletal muscles, which may be closely involved in inflammatory response, fibrotic repair and muscle regeneration during skeletal muscle wound healing.  相似文献   

7.
8.
In insulin containing defined medium TGF-beta 1, TGF-beta 2, and bFGF all stimulate chondrogenic differentiation in high-density micromass cultures of distal limb bud mesenchyme cells of chick embryos. In addition bFGF inhibits myogenic differentiation, while TGF-beta 1 and TGF-beta 2 appear to have no effect. TGF-beta 1 and bFGF together act additively to enhance chondrogenesis, while TGF-beta blocks the bFGF inhibitory action on myoblasts, thus allowing them to differentiate. In the absence of insulin, the inhibitory effect of bFGF on muscle cell differentiation is reduced; cartilage differentiation in the presence of the above growth factors is also slightly reduced.  相似文献   

9.
Summary The regeneration of skeletal muscle fibers of the adult chicken was examined after a focal injury brought about with a liquid-nitrogen cooled brass rod. Immunofluorescence microscopy with antibodies specific for troponin (TN) components (T, I, and C) from adult chicken breast and ventricular muscles showed the presence of different fiber types in both the anterior and posterior latissimus dorsi muscles. New fibers produced in the regions adjacent to the site of injury in both muscles exhibited the same immunoreactivities as those previously seen in embryonic skeletal muscles. As differentiation proceeded, regenerating cells lost their embryonic antigenicities and recovered their characteristic adult reactivities. These results indicate that, during regeneration from cold injury, skeletal muscles apparently pass again through an embryonic stage during which they synthesize embryonic-like TN isoforms.  相似文献   

10.
11.
The present study analyzes the effect of selective deafferentation on the reperfusion injury of the skeletal muscle when nociceptive sensory fibers of the left sciatic nerve are selectively damaged by capsaicin pretreatment in a rat model following tourniquet ischemia (ISC) applied for 30 min, 1 h, and 2 h on the left hind limb. The isometric tetanic contractile force of the extensor digitorum longus (EDL) muscle was measured after 1 h, and 1, 3, or 7 days of reperfusion. Contractile force of the damaged muscle was compared to the intact contralateral muscle. In another group, ISC was used without capsaicin pre-treatment. After 30 min of ISC, there was no difference between deafferented and non-pretreated groups. Following 1 h ISC, with the exception of 1 h reperfusion, the non-pretreated group produced stronger contractions than the deafferented group. After 2 h ISC, the contractile force of the deafferented muscle was significantly stronger compared to the non-deafferented muscle force at all reperfusion times. In conclusions, it was found that the absence of peptidergic sensory fibers after long-lasting (2 h) ischemia is beneficial in reperfusion injury, whereas the absence of vasodilator peptides has unfavorable effects if tissue damage is milder (after 1 h ischemia).  相似文献   

12.
Striated muscle fibres and fibroblasts observed at electron microscope were entirely developed when the tail of tadpoles reached its maximum size. However, during resorption of the tail, striated muscle fibres showed signs of degeneration: rupture and disorganization of myofibrils, altered mitochondria and lipid droplets in the cytoplasm. A great amount of macrophages phagocyting myofibrils and fibroblasts containing collagen fibrils in several breakdown stages were also observed among degenerated muscle fibres.  相似文献   

13.
LPS induces an immediate release of thromboxane TxA2 and a delayed release of PGE2. Dexamethasone suppresses the LPS-induced release of TxA2 and PGE2. In the first 8 h after LPS addition, the specific COX-2 inhibitor SC236 inhibits the PGE2 and TxA2 release by about 80% and 20%, whereas the release of PGE2 and TxA2 between 8 and 24 h is inhibited by about 40% and 35%, respectively. Resident liver macrophages express substantial amounts of COX-1, TxAS, cPGES and mPGES-2, small amounts of COX-2 but almost no detectable amounts of mPGES-1. LPS induces an increase of COX-2 and mPGES-1, but does not change COX-1, cPGES, mPGES-2 and TxAS at protein level. Dexamethasone suppresses almost completely the LPS-induced effects on COX-2 and mPGES-1. It is concluded that (1) COX-1 and COX-2 are involved in the LPS-induced synthesis of TxA2 and PGE2; (2) TxA2 release is catalyzed at early time-points by the combined action of COX-1 and TxAs, whereas at later time points the newly expressed COX-2 couples to TxAS and contributes to the TxA2 release; (3) PGE2 release within the first 8 h is predominantly catalyzed by COX-2, whereas at later time-points COX-1 couples to the newly expressed mPGES-1 and contributes to the PGE2 release.  相似文献   

14.
15.
The dynamics of the working hyperemia of cat m. gastrocnemius was studied by means of an electromagnetic flowmeter. Two phases could be distinguished in the increase in the rate of circulation. There proved to be a rapid increase of the blood flow during the I phase, and an abrupt reduction of this process during the II phase. The duration of the I phase failed to depend on the frequency of stimulation and on the number of the contracting motor units. The II phase was absent when the number of the contracting motor units was few or the frequency of stimulation was low. It is suggested that the dilatation of the precapillary arterioles is responsible for the I phase of the working hyperemia and the II phase is connected with the dilatation of the larger arteries.  相似文献   

16.
Poorly healing mandibular fractures and osteotomies can be troublesome complications of craniomaxillofacial trauma and reconstructive surgery. Gene therapy may offer ways of enhancing bone formation by altering the expression of desired growth factors and extracellular matrix molecules. The elucidation of suitable candidate genes for therapeutic intervention necessitates investigation of the endogenously expressed patterns of growth factors during normal (i.e., successful) fracture repair. Transforming growth factor beta1 (TGF-beta1), its receptor (Tbeta-RII), and the extracellular matrix proteins osteocalcin and type I collagen are thought to be important in long-bone (endochondral) formation, fracture healing, and osteoblast proliferation. However, the spatial and temporal expression patterns of these molecules during membranous bone repair remain unknown. In this study, 24 adult rats underwent mandibular osteotomy with rigid external fixation. In addition, four identically treated rats that underwent sham operation (i.e., no osteotomy) were used as controls. Four experimental animals were then killed at each time point (3, 5, 7, 9, 23, and 37 days after the procedure) to examine gene expression of TGF-beta1 and Tbeta-RII, osteocalcin, and type I collagen. Northern blot analysis was used to compare gene expression of these molecules in experimental animals with that in control animals (i.e., nonosteotomized; n = 4). In addition, TGF-beta1 and T-RII proteins were immunolocalized in an additional group of nine animals killed on postoperative days 3, 7, and 37. The results of Northern blot analysis demonstrated a moderate increase (1.7 times) in TGF-beta1 expression 7 days postoperatively; TGF-beta1 expression returned thereafter to near baseline levels. Tbeta-RII mRNA expression was downregulated shortly after osteotomy but then increased, reaching a peak of 1.8 times the baseline level on postoperative day 9. Osteocalcin mRNA expression was dramatically downregulated shortly after osteotomy and remained low during the early phases of fracture repair. Osteocalcin expression trended slowly upward as healing continued, reaching peak expression by day 37 (1.7 times the control level). In contrast, collagen type IalphaI mRNA expression was acutely downregulated shortly after osteotomy, peaked on postoperative days 5, and then decreased at later time points. Histologic samples from animals killed 3 days after osteotomy demonstrated TGF-beta1 protein localized to inflammatory cells and extracellular matrix within the fracture gap, periosteum, and peripheral soft tissues. On postoperative day 7, TGF-beta1 staining was predominantly localized to the osteotomized bone edges, periosteum, surrounding soft tissues, and residual inflammatory cells. By postoperative day 37, complete bony healing was observed, and TGF-beta1 staining was localized to the newly formed bone matrix and areas of remodeling. On postoperative day 3, Tbeta-RII immunostaining localized to inflammatory cells within the fracture gap, periosteal cells, and surrounding soft tissues. By day 7, Tbeta-RII staining localized to osteoblasts of the fracture gap but was most intense within osteoblasts and mesenchymal cells of the osteotomized bone edges. On postoperative day 37, Tbeta-RII protein was seen in osteocytes, osteoblasts, and the newly formed periosteum in the remodeling bone. These observations agree with those of previous in vivo studies of endochondral bone formation, growth, and healing. In addition, these results implicate TGF-beta1 biological activity in the regulation of osteoblast migration, differentiation, and proliferation during mandibular fracture repair. Furthermore, comparison of these data with gene expression during mandibular distraction osteogenesis may provide useful insights into the treatment of poorly healing fractures because distraction osteogenesis has been shown to be effective in the management of these difficult clinical cases.  相似文献   

17.
The purpose of this study was to evaluate the integrity of the muscle membrane and its associated cytoskeleton after a contraction-induced injury. A single eccentric contraction was performed in vivo on the tibialis anterior (TA) of male Sprague-Dawley rats at 900°/s throughout a 90°-arc of motion. Maximal tetanic tension (Po) of the TAs was assessed immediately and at 3, 7, and 21 days after the injury. To evaluate sarcolemmal integrity, we used an Evans blue dye (EBD) assay, and to assess structural changes, we used immunofluorescent labeling with antibodies against contractile (myosin, actin), cytoskeletal (-actinin, desmin, dystrophin, -spectrin), integral membrane (- and -dystroglycan, sarcoglycan), and extracellular (laminin, fibronectin) proteins. Immediately after injury, P0 was significantly reduced to 4.23 ± 0.22 N, compared with 8.24 ± 1.34 N in noninjured controls, and EBD was detected intracellularly in 54 ± 22% of fibers from the injured TA, compared with 0% in noninjured controls. We found a significant association between EBD-positive fibers and the loss of complete dystrophin labeling. The loss of dystrophin was notable because organization of other components of the subsarcolemmal cytoskeleton was affected minimally (-spectrin) or not at all (- and -dystroglycan). Labeling with specific antibodies indicated that dystrophin's COOH terminus was selectively more affected than its rod domain. Twenty-one days after injury, contractile properties were normal, fibers did not contain EBD, and dystrophin organization and protein level returned to normal. These data indicate the selective vulnerability of dystrophin after a single eccentric contraction-induced injury and suggest a critical role of dystrophin in force transduction. muscle injury; dystrophin; cytoskeleton; sarcolemma  相似文献   

18.
Wound healing is a highly ordered process, requiring complex and coordinated interactions involving peptide growth factors of which transforming growth factor-beta (TGF-beta) is one of the most important. Nitric oxide is also an important factor in healing and its production is regulated by inducible nitric oxide synthase (iNOS). We have earlier shown that curcumin (diferuloylmethane), a natural product obtained from the plant Curcuma longa, enhances cutaneous wound healing in normal and diabetic rats. In this study, we have investigated the effect of curcumin treatment by topical application in dexamethasone-impaired cutaneous healing in a full thickness punch wound model in rats. We assessed healing in terms of histology, morphometry, and collagenization on the fourth and seventh days post-wounding and analyzed the regulation of TGF-beta1, its receptors type I (tIrc) and type II (tIIrc) and iNOS. Curcumin significantly accelerated healing of wounds with or without dexamethasone treatment as revealed by a reduction in the wound width and gap length compared to controls. Curcumin treatment resulted in the enhanced expression of TGF-beta1 and TGF-beta tIIrc in both normal and impaired healing wounds as revealed by immunohistochemistry. Macrophages in the wound bed showed an enhanced expression of TGF-beta1 mRNA in curcumin treated wounds as evidenced by in situ hybridization. However, enhanced expression of TGF-beta tIrc by curcumin treatment observed only in dexamethasone-impaired wounds at the 7th day post-wounding. iNOS levels were increased following curcumin treatment in unimpaired wounds, but not so in the dexamethasone-impaired wounds. The study indicates an enhancement in dexamethasone impaired wound repair by topical curcumin and its differential regulatory effect on TGF-beta1, it's receptors and iNOS in this cutaneous wound-healing model.  相似文献   

19.
We examined whether the quantity of exercise performed influences the expression of monocarboxylate transporter (MCT) 1 and MCT4 in mouse skeletal muscles (plantaris, tibialis anterior, soleus) and heart. Wheel running exercise (1, 3, and 6 wk) was used, which results in marked variations in self-selected running activity. Differences in muscle MCT1 and MCT4 among animals, before the initiation of running, were not related to the quantity of exercise performed on the first day of wheel running. No changes in MCT4 were observed over the course of the study (P > 0.05). After 6 wk of running, were there significant increases in heart (50%; P < 0.05) and muscle MCT1 (31-60%; P < 0.05) but not after 1 and 3 wk (P > 0.05). Because skeletal muscle MCT1 and running distances varied considerably, we examined the relationship between these two parameters. Within the first week of training, MCT1 was negatively correlated with the accumulated running distance (r = -0.70, P < 0.05). On further analysis, it appears that, in the first week, excessive running (>20 km/wk) represses MCT1 (-16.1%; P < 0.05), whereas more modest amounts of running (<20 km/wk) increase MCT1 (+37%; P < 0.05). After 3 wk of running, a positive relationship was observed between MCT1 and running distance (r = +0.76), although there is a threshold that must be exceeded before an increase over the control animals occurs. Finally, in week 6, when MCT1 was increased in the tibialis anterior and plantaris muscles, there were no correlations with the accumulated running distances. These studies have shown that mild exercise training fails to increase MCT4 and that changes in MCT1 are complex, depending not only the accumulated exercise but also on the stage of training.  相似文献   

20.
Senescent cells compromise tissue structure and function in older organisms. We recently identified senescent fibroadipogenic progenitors (FAPs) with activated chemokine signaling pathways in the skeletal muscle of old mice, and hypothesized these cells may contribute to the age-associated accumulation of immune cells in skeletal muscle. In this study, through cell–cell communication analysis of skeletal muscle single-cell RNA-sequencing data, we identified unique interactions between senescent FAPs and macrophages, including those mediated by Ccl2 and Spp1. Using mouse primary FAPs in vitro, we verified increased expression of Ccl2 and Spp1 and secretion of their respective proteins in the context of both irradiation- and etoposide-induced senescence. Compared to non-senescent FAPs, the medium of senescent FAPs markedly increased the recruitment of macrophages in an in vitro migration assay, an effect that was mitigated by preincubation with antibodies to either CCL2 or osteopontin (encoded by Spp1). Further studies demonstrated that the secretome of senescent FAPs promotes polarization of macrophages toward an M2 subtype. These data suggest the unique secretome of senescent FAPs may compromise skeletal muscle homeostasis by recruiting and directing the behavior of macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号