首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Calcitonin receptor-stimulating peptide-1 (CRSP-1) is a peptide recently identified from porcine brain by monitoring the cAMP production through an endogenous calcitonin (CT) receptor in the renal epithelial cell line LLC-PK(1). Here we investigated the effects of CRSP-1 on the ion transport and growth of LLC-PK(1) cells. CRSP-1 inhibited the growth of LLC-PK(1) cells with a higher potency than porcine CT. CRSP-1 enhanced the uptake of (22)Na(+) into LLC-PK(1) cells more strongly than did CT and slightly reduced the (45)Ca(2+) uptake. The enhancement of the (22)Na(+) uptake was abolished by 5-(N-ethyl-N-isopropyl) amiloride, a strong Na(+)/H(+) exchanger (NHE) inhibitor for NHE1, even at a concentration of 1x10(-8)M, although other ion transporter inhibitors did not affect the (22)Na(+) uptake. These results indicate that CRSP-1 enhances the (22)Na(+) uptake by the specific activation of NHE1. Taken together, CRSP-1 is considered to be a new regulator for the urinary ion excretion and renal epithelial cell growth.  相似文献   

3.
We isolated a novel biologically active peptide, designated calcitonin receptor-stimulating peptide (CRSP), from the acid extract of the porcine brain by monitoring cAMP production in the porcine kidney cell line LLC-PK(1). Determination of the amino acid sequence and cDNA analysis encoding a CRSP precursor showed that this peptide has approximately 60% identity in the amino acid sequence with human calcitonin gene-related peptide type-alpha (alphaCGRP), type-beta (betaCGRP), and porcine CGRP. Northern blot analysis and radioimmunoassay demonstrated that CRSP is expressed mainly in the thyroid gland and the central nervous system, in which the calcitonin receptor was abundantly expressed. Synthetic CRSP elicited a potent stimulatory effect on the cAMP production in LLC-PK(1) cells. Although it shows significant sequence similarity with CGRPs, this peptide did not elicit cAMP elevation in cells that endogenously expressed a CGRP receptor or an adrenomedullin receptor or were transfected with either of these recombinant receptors. Administration of CRSP into anesthetized rats did not alter the blood pressure but induced a transient decrease in the plasma calcium concentration. In fact, this peptide potently increased the intracellular cAMP concentration in COS-7 cells that expressed the recombinant calcitonin receptor. These unique properties indicate that CRSP is not a porcine counterpart of betaCGRP and probably elicits its biological effects via the calcitonin receptor.  相似文献   

4.
Katafuchi T  Hamano K  Kikumoto K  Minamino N 《Peptides》2005,26(12):2616-2623
In this study, we isolated a peptide eliciting a potent stimulatory effect on cAMP production in LLC-PK1 cells from acid extracts of porcine brain. By structural analysis, this peptide was determined to be a C-terminal glycine-extended form of calcitonin receptor-stimulating peptide-1 (CRSP-1-Gly). Synthetic CRSP-1-Gly enhanced the cAMP production in COS-7 cells expressing calcitonin (CT) receptor as strongly as CRSP-1. Measurement of immunoreactive (IR) CRSP-1-Gly by radioimmunoassay using the specific antisera against CRSP-1-Gly showed that a relatively high level (>1 pmol/g wet weight) of IR-CRSP-1-Gly was detected in the midbrain, hypothalamus, anterior and posterior lobes of pituitary, and thyroid gland, and the ratio of IR-CRSP-1-Gly to total IR-CRSP-1 varies from 0.02 to 0.35 in each tissue. These results suggest that CRSP-1-Gly is actually present in the tissues as one of major endogenous molecular forms of CRSP-1, and can regulate the cells expressing the CT receptor both in the central nervous system and peripheral tissues in a manner similar to that of CRSP-1. IR-CRSP-2 and IR-CRSP-3 are also present in the brain and other tissues, but their tissue concentrations are 33% on average and less than 3% that of total IR-CRSP-1, respectively.  相似文献   

5.
Calcitonin receptor-stimulating peptides (CRSPs) are new members of the calcitonin/calcitonin gene-related peptide (CT/CGRP) family identified in pigs, dogs and other domestic animals, and CRSP-1 is an active ligand for the CT receptor (CT-R). We recently sequenced porcine CRSP genes (Crsps) and found similarity with the CT/CGRP gene (Ct/Cgrp) in sequence and genomic organization. In this study, we identified five Crsps, Crsp-1 to Crsp-5, in dogs. Crsp-1 has five exons with an exon-intron organization identical to that of porcine Crsp-1 or Crsp-2, while Crsp-2 and Crsp-3 have additional CT-2- and CT-3-coding exons like Ct/Cgrp. Crsp-2 was renamed as Ct-2/Crsp-2 because both CRSP-2 and CT-2 mRNAs were tissue-specifically expressed. Crsp-4 and Crsp-5 are presumably generated by retrotransposition. We postulate that Crsps were generated from the gene duplication of Ct/Cgrp, and gained their diversity during mammalian evolution. Among the canine CTs and CRSPs, CRSP-1, CT-1 and CT-2 are active ligands for the CT-R, but CRSP-2 and others are inactive. Canine CRSP-1 and CT-2 are expressed in the central and peripheral systems, while CT-1 is localized in the thyroid gland. These findings indicate that dogs can be used for an experimental model as analysing the physiological roles of the CT/CGRP/CRSP family.  相似文献   

6.
Katafuchi T  Minamino N 《Peptides》2004,25(11):2039-2045
In this review, we describe the structure and biological properties of calcitonin receptor-stimulating peptide-1 (CRSP-1), CRSP-2 and CRSP-3, the novel members of the CGRP family. CRSP-1, which has been identified in the pig, cow, dog, and horse, is a specific ligand for the calcitonin (CT) receptor, and porcine CRSP-1 elicits a 100-fold greater effect on a recombinant porcine CT receptor than porcine CT, although this peptide has high structural similarity with CGRP. CRSP-1 is expressed and synthesized mainly in the central nervous system (CNS), pituitary and thyroid gland. In an in vivo experiment, bolus administration of CRSP-1 into rats reduced the plasma calcium concentration, but did not alter blood pressure, indicating its action as a CT receptor agonist in the peripheral circulation. In the CNS, CRSP-1 is also deduced to be an endogenous agonist for the CT receptor. CRSP-2 has been identified in the pig and dog, and CRSP-3 has been identified only in the pig. They are expressed and synthesized mainly in the CNS and thyroid gland. However, their endogenous molecular forms, receptors, and biological activity remain unidentified.  相似文献   

7.
降钙素基因相关肽家族是一类多功能的激素家族 ,参与人体的多种生物学功能 ,与多种疾病有关。降钙素基因相关肽受体包括降钙素受体 (CTR)和降钙素受体样受体 (CRLR) ,CTR可以独自与降钙素结合 ,而CRLR必须与一组称作受体活性修饰蛋白 (RAMPs)的蛋白质共同作用才能发挥生物学功能。综述CTR的研究概况及CRLR与RAMPs相互作用的机制和表达调控 ,以期为人们设计新型药物提供参考。  相似文献   

8.
This review focuses on the evolutionary and functional relationship of calcitonin receptor-stimulating peptide (CRSP) with calcitonin (CT)/calcitonin gene-related peptide (CGRP) in mammals. CRSP shows high sequence identity with CGRP, but distinct biological properties. CRSP genes (CRSPs) have been identified in mammals such as pigs and dogs of the Laurasiatheria, but not in primates and rodents of the Euarchontoglires or in non-placental mammals. CRSPs have genomic organizations highly similar to those of CT/CGRP genes (CT/CGRPs), which are located along with CGRPs in a locus between CYP2R1 and INSC, while the other members of the CGRP superfamily, adrenomedullin and amylin, show genomic organizations and locations distinct from CT, CGRP, and CRSP. Thus, we categorized these three peptides into the CT/CGRP/CRSP family. Non-placental mammals having one and placental mammals having multiple CT/CGRP/CRSP family genes suggests that multiplicity of CT/CGRP started at an early stage of mammalian evolution. In the placental mammals, Laurasiatheria generally possesses multiple CRSPs and only one CT/CGRP, while Euarchontoglires possesses CT/CGRP and CGRPβ but no CRSP, indicating an increase in the diversity and multiplicity of this family of genes in mammalian evolution. Phylogenetic analysis suggests that some CRSPs have been generated very recently in mammalian evolution. Taken together, the increase in the number and complexity of the CT/CGRP/CRSP family genes may have due to evolutionary pressure to facilitate adaptation during mammalian evolution. In this regard, it is important to elucidate the physiological roles of CT, CGRP and CRSP from the viewpoint of the CT/CGRP/CRSP family even in Euarchontoglires.  相似文献   

9.
The calcitonin (CT)-like (CL) receptor is a CT gene-related peptide (CGRP) receptor or an adrenomedullin (AM) receptor when co-expressed with receptor-activity-modifying proteins (RAMP) 1 or 2, respectively. The CL receptor shows 57% overall sequence identity with the CT receptor, but the homology is much lower in the extreme N-terminus. An N-terminal deletion mutant of the human (h) CL receptor (Delta18-hCL) and a chimeric receptor consisting of the N-terminal amino acids of the porcine (p) CT receptor fused to the Delta18-hCL receptor (pCT-hCL) were therefore analyzed. The Delta18-hCL receptor function was abolished when co-expressed with RAMP1 or -2. The pCT-hCL receptor was a fully functional CGRP receptor when co-expressed with RAMP1, but the RAMP2-dependent AM receptor function was impaired. Limited sequence similarities in the N-terminus of the pCT and the hCL receptors rescue CGRP but not AM receptor binding and signalling.  相似文献   

10.
11.
The expressions of the calcitonin receptor (CTR), the calcitonin receptor-like receptor (CLR), the receptor activity-modifying proteins (RAMP) 1-3, and of the receptor component protein (RCP) have been studied in mouse bone marrow macrophages (BMM) during osteoclast differentiation, induced by treatment with M-CSF and RANKL. Analyses of mRNA showed that CLR and RAMP1-3, but not CTR, were expressed in M-CSF stimulated BMM. RANKL gradually increased CTR mRNA, transiently enhanced CLR and transiently decreased RAMP1 mRNA, but did not affect RAMP2, RAMP3, or RCP mRNA. However, RANKL did not affect protein levels of CLR or RAMP1-3 as assessed by Western blots or FACS analyses, whereas immunocytochemistry showed enhanced CTR protein. Analyses of cAMP production showed that BMM cells expressed functional receptors for calcitonin gene-related peptide (CGRP), amylin, adrenomedullin, and intermedin, but not for calcitonin and calcitonin receptor stimulating peptide (CRSP), but that RANKL induced the expression of receptors for calcitonin and CRSP as well. Calcitonin, CGRP, amylin, adrenomedullin, intermedin, and CRSP all down regulated the CTR mRNA, but none of the peptides caused any effects on the expression of CLR or any of the RAMPs. Our data show that BMM cells express receptors for CGRP, amylin, adrenomedullin, and intermedin and that RANKL induces the formation of receptors for calcitonin and CRSP in these cells. We also show, for the first time, that the CTR is not only down regulated by signaling through the CTR but also by the peptides signaling through CLR/RAMPs.  相似文献   

12.
Calcitonin receptor-stimulating peptide (CRSP) and intermedin (IMD) are two recently discovered peptides in the calcitonin (CT) family of peptides. CRSP and IMD, similar to CT, calcitonin gene-related peptide (CGRP), and amylin (AMY), but in contrast to adrenomedullin (ADM), inhibited bone resorption in mouse calvarial bones. CRSP and IMD, similar to CT, CGRP, AMY, but in contrast to ADM, decreased formation of osteoclasts and number of pits in bone marrow macrophage cultures stimulated by M-CSF and RANKL, with no effect on the expression of a number of genes associated with osteoclast progenitor cell differentiation. CRSP and IMD inhibited osteoclastogenesis at a late stage but had no effect on DC-STAMP mRNA. IMD, similar to CGRP, AMY, and ADM stimulated cyclic AMP formation in M-CSF expanded osteoclast progenitor cells lacking CT receptors (CTRs). RANKL induced CTRs and a cyclic AMP response also to CT and CRSP, and increased the cyclic AMP response to CGRP, AMY, and IMD but decreased the response to ADM. Our data demonstrates that CRSP and IMD share several functional properties of peptides in the CT family of peptides, including inhibition of bone resorption and osteoclast formation. The data also show that the reason why ADM does not inhibit osteoclast activity or formation is related to the fact that RANKL decreases ADM receptor signaling through the adenylate cyclase-cyclic AMP pathway. Finally, the findings indicate that activation by CGRP, AMY, and IMD may include activation of both CT and CT receptor-like receptors.  相似文献   

13.
Parathyroid hormone (PTH) is a major mediator of calcium and phosphate metabolism through its interactions with receptors in kidney and bone. PTH binds with high affinity to PTH1 and PTH2, members of the superfamily of G protein-coupled receptors. In order to clone the canine PTH1 receptor, a canine kidney cDNA library was screened using the human PTH1 receptor cDNA and two clones were further characterized. The longest clone was 2177 bp and contained a single open reading frame of 1785 bp, potentially encoding a protein of 595 amino acids with a predicted molecular weight of 66.4 kD. This open reading frame exhibits >91% identity to the human PTH1 receptor cDNA and >95% identity when the putative canine and human protein sequences are compared. Competition binding following transfection of the canine PTH1 receptor into CHO cells demonstrated specific displacement of 125I-human PTH 1-34 by canine PTH 1-34, human PTH 1-34, and canine/human parathyroid hormone related peptide (PTHrP) 1-34. Treatment of canine PTH1 receptor transfected cells, but not mock transfected cells, with these ligands also resulted in increased levels of intracellular cAMP. In contrast, the non-related aldosterone secretion inhibiting factor 1-35 neither bound nor activated the canine PTH1 receptor. Northern blot analysis revealed high levels of PTH1 receptor mRNA in the kidney, with much lower, but detectable, levels in aorta, heart, lung, prostate, testis, and skeletal muscle. Together, these data indicate that we have cloned the canine PTH1 receptor and that it is very similar, both in sequence and in functional characteristics, to the other known PTH1 receptors.  相似文献   

14.
Dumont Y  Chabot JG  Quirion R 《Peptides》2004,25(3):365-391
Over the past 20 years, receptor autoradiography has proven most useful to provide clues as to the role of various families of peptides expressed in the brain. Early on, we used this method to investigate the possible roles of various brain peptides. Natriuretic peptide (NP), neuropeptide Y (NPY) and calcitonin (CT) peptide families are widely distributed in the peripheral and central nervous system and induced multiple biological effects by activating plasma membrane receptor proteins. The NP family includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). The NPY family is composed of at least three peptides NPY, peptide YY (PYY) and the pancreatic polypeptides (PPs). The CT family includes CT, calcitonin gene-related peptide (CGRP), amylin (AMY), adrenomedullin (AM) and two newly isolated peptides, intermedin and calcitonin receptor-stimulating peptide (CRSP). Using quantitative receptor autoradiography as well as selective agonists and antagonists for each peptide family, in vivo and in vitro assays revealed complex pharmacological responses and radioligand binding profile. The existence of heterogeneous populations of NP, NPY and CT/CGRP receptors has been confirmed by cloning. Three NP receptors have been cloned. One is a single-transmembrane clearance receptor (NPR-C) while the other two known as CG-A (or NPR-A) and CG-B (or NPR-B) are coupled to guanylate cyclase. Five NPY receptors have been cloned designated as Y(1), Y(2), Y(4), Y(5) and y(6). All NPY receptors belong to the seven-transmembrane G-protein coupled receptors family (GPCRs; subfamily type I). CGRP, AMY and AM receptors are complexes which include a GPCR (the CT receptor or CTR and calcitonin receptor-like receptor or CRLR) and a single-transmembrane domain protein known as receptor-activity-modifying-proteins (RAMPs) as well as an intracellular protein named receptor-component-protein (RCP). We review here tools that are currently available in order to target each NP, NPY and CT/CGRP receptor subtype and establish their respective pathophysiological relevance.  相似文献   

15.
Calcitonin and calcitonin gene-related peptide stimulate adenylate cyclase activity and plasminogen activator production in cultured renal tubular LLC-PK1 cells. Salmon [125I]calcitonin and human [125I]calcitonin gene-related peptide bound specifically to the cells. Salmon [125I]calcitonin binding was reduced at lower concentrations of non-radioactive salmon calcitonin than of human calcitonin gene-related peptide. For the stimulation of adenylate cyclase activity and plasminogen activator production, the potency of salmon calcitonin was higher than that of human calcitonin and calcitonin gene-related peptide. In a subclone of LLC-PK cells lacking salmon calcitonin binding sites, no specific binding of [125I]CGRP occurred, and adenylate cyclase activity and plasminogen activator production was not increased by the peptides. Thus, in LLC-PK1 cells the stimulation of adenylate cyclase activity and plasminogen activator production by calcitonin gene-related peptide is probably mediated by the calcitonin receptor.  相似文献   

16.
Structural requirements for binding to the bone calcitonin (CT) receptor and for CT bioactivity both in vitro and in vivo were assessed for a series of N-terminally truncated, N alpha-acetylated, fragments of salmon calcitonin (sCT). Sequential deletion of amino acid residues from the amino-terminus of [Ala7]sCT-(2-32) peptide amide first led to partial agonists and, upon deletion of residues 1 to 7, to a high affinity antagonist, N alpha-acetyl-sCT-(8-32)-NH2. The presence of two separate domains within the sCT sequence is proposed: (I) a binding domain comprising residues 9-32 and (II) an activation domain requiring residues 3 to 6. N alpha-acetyl-sCT-(8-32)-NH2, in several bioassays including plasminogen activator release from LLC-PK1 cells (pA2 = 7.31), cAMP production in UMR-106-06 cells (pA2 = 7.81) and in the fetal rat long bone resorption assay showed potent antagonistic properties.  相似文献   

17.
18.
The calcitonin-like receptor (CLR) associated with receptor-activity-modifying proteins (RAMP) 1 or -2 recognizes calcitonin gene-related peptide (CGRP) and adrenomedullin (AM), respectively. The amino acid sequence CNRTWDGWLCW corresponding to residues 64-74 in the extracellular N-terminus of the CLR is conserved. The Asp(69) (D(69)) is present in all family B1 G-protein-coupled receptors. Here the D(69) of a V5-tagged mouse CLR has been mutated to Ala (A), Glu (E), and Asn (N). The function of the intact and the mutant CLR was investigated in COS-7 cells coexpressing myc-tagged mouse RAMP1 or -2. In CLR/RAMP1 and -2 expressing cells CGRP and AM stimulated cAMP formation with an EC(50) of 0.17 and 0.50 nM, respectively. The expression of the D69A, D69E, and D69N mutants at the cell surface was comparable to that of the intact CLR. cAMP stimulation by CGRP and AM was abolished in the D69A mutant. With the D69E mutant the EC(50) of CGRP and AM were 1000-fold higher than those with the intact CLR. With the D69N mutant the EC(50) of CGRP was 0.48 nM and that of AM 0.44 nM, but the maximal cAMP formation was reduced to 24% and to 12% of cells with the intact CLR. Co-immunoprecipitation of RAMP1 with the CLR, indicating complex formation, was reduced with the D69A, D69N, and D69E mutants. RAMP2 co-precipitated with the mutant receptors indistinguishable from the intact CLR. In conclusion, mutation of D69 to N, E or A in the CLR did not affect its expression at the cell surface, but impaired or abolished the CGRP and AM receptor function in the presence of RAMP1 and -2, respectively.  相似文献   

19.
M J Twery  R L Moss 《Peptides》1985,6(3):373-378
Individual neurons in the hypothalamus, thalamus, cortex, and other forebrain areas of urethane-anesthetized, male rats were iontophoretically tested for their membrane sensitivity to salmon calcitonin (CT), human CT, and CT gene-related peptide (CGRP). Extracellular recording of unit activity revealed that depression of neuronal firing was the predominant effect of iontophoretically applied salmon CT (35 of 74 cells tested). Few neurons responded to salmon CT with an increase in firing rate (N = 3). When CGRP was iontophoretically applied a pattern of response resembling that of salmon CT was observed. CGRP was predominantly inhibitory and excited those neurons whose firing rate was increased by salmon CT. Inhibition was also the predominant effect of human CT. However, no neurons were excited by human CT. The results clearly demonstrate that a subpopulation of neurons with membrane sensitivity to salmon CT, human CT, and CGRP are present in the rat forebrain. This finding suggests that modulation of neuronal activity may underlie the behavioral and biochemical effects of these peptides when administered centrally. Endogenous CGRP and CT-like peptides in rat brain may be capable of regulating these events as neurotransmitters or neuromodulators.  相似文献   

20.
R L Shew  R E Papka  D L McNeill 《Peptides》1991,12(3):593-600
Immunoreactivity to the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) was examined in nerves in the rat uterus as a prelude to studying their effects on uterine contractility. With immunocytochemical techniques, SP immunoreactivity (SP-I) and CGRP-I were localized in myometrial nerves throughout the uterine horns, with nerves immunoreactive for CGRP being the more numerous. Immunocytochemical double labeling studies revealed SP coexisted with CGRP in a subpopulation of CGRP-I nerve fibers, i.e., SP-I was not present in all CGRP-I nerves. Effects of these neuropeptides on uterine contractility were examined on in vitro preparations of uterine horns from diethylstilbestrol-treated rats. SP (10(-4) to 10(-8) M) stimulated uterine contraction in a dose-related manner. CGRP(1-37) and CGRP(8-37) had no effect on basal uterine tension. While CGRP(1-37) (10(-7) M) reduced SP-stimulated (10(-5) M) uterine contraction by 56%, CGRP(8-37) had no effect on SP-stimulated uterine contraction. However, CGRP(8-37) (10(-6) M) significantly reduced the ability of CGRP(1-37) (10(-7) M) to inhibit SP-stimulated uterine contraction. These results demonstrate that SP- and CGRP-I are present in, and coexist in some uterine nerves, presumably afferent nerves. The first 7 amino acids are necessary for the inhibitory effect of CGRP(1-37) on stimulated uterine contraction. In addition, CGRP(8-37) acted as an antagonist to this inhibitory action. SP and CGRP could be coreleased from afferent fibers in an "efferent fashion" and influence uterine contractility. SP having a contractile effect and CGRP having a relaxing effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号