首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dependence of gamma-aminobutyric acid (GABA) and acetylcholine (ACh) release on Ca2+ was comparatively studied in synaptosomes from mouse brain, by correlating the influx of 45Ca2+ with the release of the transmitters. It was observed that exposure of synaptosomes to a Na+-free medium notably increases Ca2+ entry, and this condition was used, in addition to K+ depolarization and the Ca2+ ionophore A23187, to stimulate the influx of Ca2+ and the release of labeled GABA and ACh. The effect of ruthenium red (RuR) on these parameters was also investigated. Of the three experimental conditions used, the absence of Na+ in the medium proved to be the most efficient in increasing Ca2+ entry. RuR inhibited by 60-70% the influx of Ca2+ stimulated by K+ depolarization but did not affect its basal influx or its influx stimulated by the absence of Na+ or by A23187. The release of ACh was stimulated by K+ depolarization, absence of Na+ in the medium, and A23187 in a strictly Ca2+-dependent manner, whereas the release of GABA was only partially dependent on the presence of Ca2+ in the medium. The extent of stimulation of ACh release was related to the extent of Ca2+ entry, whereas no such correlation was observed for GABA. In the presence of Na+, RuR did not affect the release of the transmitters induced by A23187. In the absence of Na+, paradoxically RuR notably enhanced the release of both ACh and GABA induced by A23187, in a Ca2+-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Ouabain (5 x 10(-8)-5 x 10(-4) M) was confirmed to cause a dose-dependent increase in [3H]acetylcholine ([3H]ACh) release, cytosolic free Ca2+ concentration ([Ca2+]i), and 22Na+ uptake in cerebrocortical synaptosomes of rats in the presence of extracellular Ca2+. Ouabain also caused a dose-dependent decrease in membrane potential. In a low-Na+ (10 mM) medium, ouabain failed to increase [3H]ACh release and [Ca2+]i. Tetrodotoxin (10(-6) M) had no effect on the ouabain-induced increase in both [3H]ACh release and [Ca2+]i but abolished the increase in 22Na+ uptake and partially inhibited the depolarizing effect. Verapamil (10(-6)-5 x 10(-4) M) inhibited the ouabain-induced increase in both [3H]ACh release and [Ca2+]i in a dose-dependent manner. Removal of extracellular Ca2+ abolished the effect of ouabain on [Ca2+]i but not on [3H]ACh release and 22Na+ uptake, regardless of the presence or absence of EGTA. In the absence of extracellular Ca2+, 10 mM Mg2+ blocked ouabain-induced [3H]ACh release, which was resistant to verapamil. These results suggest that ouabain can increase ACh release from synaptosomes without the preceding increases in intracellular Ca2+ and/or Na+ content. It seems likely that the removal of extracellular Ca2+ unmasks mechanisms of ouabain action different from those operating in the presence of Ca2+.  相似文献   

3.
In contrast to rat and human erythrocytes, nucleated erythrocytes from two fish species (Cyprinus carpio and Salmo trutta) underwent almost complete haemolysis in 20 min of EDTA addition. Using Ca2+/Mg2+ EGTA-citrate buffer, we observed that half-maximal haemolysis of fish erythrocytes occurs at [Ca2+]o approximately 10 microM independently of extracellular Mg2+ concentration. Attenuation of [Ca2+]o with EGTA also decreased stability of the plasma membrane of vascular smooth muscle cells (VSMC) and HeLa cells, indicated by a three- to five-fold elevation of lactate dehydrogenase release and passive permeability of plasma membrane for Na+. In VSMC, EGTA lowered [Ca2+]i by approximately 20%. This effect was absent in VSMC-loaded with the intracellular Ca2+ chelator BAPTA. In contrast to EGTA, BAPTA did not affect haemoglobin release from fish erythrocytes and passive permeability for Na+ in VSMC. Viewed collectively, our data show that in nucleated cells, extracellular Ca2+ plays a crucial role in the maintenance of plasma membrane integrity.  相似文献   

4.
The effects of maitotoxin (MTX) on endogenous amino acid release were tested on highly purified striatal neurons differentiated in primary culture. MTX induced a large and concentration-dependent release of gamma-aminobutyric acid (GABA). This effect was abolished when experiments were performed in the absence of external Ca2+, and restored when Ca2+ ions were added after removing the MTX-containing Ca2+-free solution. MTX-induced amino acid release was not affected by 1 microM nifedipine and only slightly inhibited by 1 mM Co2+. MTX also induced a massive accumulation of 45Ca2+ in the neurons which, in contrast to the MTX-evoked GABA release, was totally blocked in the presence of 1 mM Co2+. Whereas 500 nM tetrodotoxin was without significant effect, MTX-evoked GABA release was dependent on the presence of external Na+ and sensitive to nipecotic acid, a GABA uptake inhibitor. It is concluded that, on striatal neurons, MTX induced Na+ influx only in the presence of external Ca2+. The increase in cytoplasmic Na+ ions then triggers the release of GABA.  相似文献   

5.
The Na+ and K+ permeability properties of rat brain mitochondria were determined to explain the influences of these cations upon respiration. A new procedure for isolating exceptionally intact mitochondria with minimal contamination by synaptosomes was developed for this purpose. Respiration was uncoupled by Na+ and less so by K+. Uncoupling was maximal in the presence of EDTA plus Pi and was decreased by Mg2+. Maximal uncoupler-stimulated respiration rates were inhibited by Na+ but largely unaffected by K+. The inhibition by Na+ was relatively insensitive to Mg2+. Membrane Na+ and K+ conductances as well as neutral exchanges (Na+/H+ and K+/H+ antiport activities) were determined by swelling measurements and correlated with metabolic effects of the cations. Cation conductance, i.e. electrophoretic Na+ or K+ permeation, was increased by EDTA (Na+ greater than K+) and decreased by Mg2+. Magnesium preferentially suppressed Na+ conductance so as to reverse the cation selectivity (K+ greater than Na+). Neutral cation/H+ exchange rates (Na+ greater than K+) were not influenced by chelator or Mg2+. The extent of cation-dependent uncoupling of respiration correlated best with the inner membrane conductance of the ion according to an empirical relationship derived with the model K+ conductor valinomycin. The metabolic influences of Na+ and K+ can be explained in terms of coupled flow of these ions with protons and their effect upon the H+ electrochemical gradient although alternative possibilities are discussed. These in vitro studies are compared to previous observations in situ to assess their physiological significance.  相似文献   

6.
The action of the polyether antibiotic monensin on the release of gamma-[3H]amino-n-butyric acid [( 3H]GABA) from mouse brain synaptosomes is characterized. Monensin enhances the release of this amino acid transmitter in a dose-dependent manner and does not modify the efflux of the nontransmitter amino acid alpha-[3H]aminoisobutyrate. The absence of external Ca2+ fails to prevent the stimulatory effect of monensin on [3H]GABA release. Furthermore, monensin is less effective in stimulating [3H]GABA release in the presence of Ca2+. The releasing response to monensin is absolutely dependent on external Na+. The blockade of voltage-sensitive Na+ or Ca2+ channels does not modify monensin-induced release of the transmitter. Also, the blockade of the GABA uptake pathway fails to prevent the stimulatory effect of monensin on [3H]GABA release. Although monensin markedly increases Na+ permeability in synaptosomes, these data indicate that the Ca2+-independent monensin-stimulated transmitter release is not mediated by the Na+-dependent uptake pathway. It is concluded that the entrance of Na+ through monensin molecules inserted in the presynaptic membrane might be sufficient to initiate the intraterminal molecular events underlying transmitter release.  相似文献   

7.
A technique for studying the binding of La3+ to synaptosomes in a double-beam spectrophotometer, using murexide as indicator, is described. The binding of La3+ was very rapid and Scatchard plots revealed two components, with KD values of 0.6 and 27 microM in a Na+-free medium (sucrose medium) and 2.3 and 63 microM in an ionic medium containing 135 mM Na+. The binding of the cationic dye ruthenium red (RuR) showed only one site, with a KD of 3.7 microM. La3+ binding was partially inhibited by RuR and vice versa, and La3+ was also capable of partially displacing RuR previously bound to the synaptosomes, particularly in the sucrose medium. The release of labeled gamma-aminobutyric acid (GABA) stimulated by K+ depolarization was inhibited by La3+ concentrations at or above 1 microM, in the ionic medium, whereas in the sucrose medium 2.5 microM or higher La3+ concentrations notably stimulated the spontaneous release of both GABA and glutamic acid. It is concluded that La3+ and RuR share at least one type of binding site, which is probably the high-affinity La3+ site. Since both La3+ and RuR at low concentrations have been shown to block the depolarization-induced Ca2+ entry in synaptosomes, this site might be related to the voltage-dependent Ca2+ entry involved in neurotransmitter release.  相似文献   

8.
The ability of gamma-aminobutyric acid (GABA) and glycine (Gly) to modulate each other's release was studied in synaptosomes from rat spinal cord, cerebellum, cerebral cortex, or hippocampus, prelabeled with [3H]GABA or [3H]Gly and exposed in superfusion to Gly or to GABA, respectively. GABA increased the spontaneous outflow of [3H]Gly (EC50, 20.8 microM) from spinal cord synaptosomes. Neither muscimol nor (-)-baclofen, up to 300 microM, mimicked the effect of GABA, which was not antagonized by either bicuculline or picrotoxin. However, the effect of GABA was counteracted by the GABA uptake inhibitors nipecotic acid and N-(4,4-diphenyl-3-butenyl)nipecotic acid. Moreover, the GABA-induced [3H]Gly release was Na+ dependent and disappeared when the medium contained 23 mM Na+. The effect of GABA was Ca2+ independent and tetrodotoxin insensitive. Conversely, Gly enhanced the outflow of [3H]GABA from rat spinal cord synaptosomes (EC50, 100.9 microM). This effect was insensitive to both strychnine and 7-chlorokynurenic acid, antagonists at Gly receptors, but it was strongly Na+ dependent. Also, the Gly-evoked [3H]GABA release was Ca2+ independent and tetrodotoxin insensitive. GABA increased the outflow of [3H]Gly (EC50, 11.1 microM) from cerebellar synaptosomes; the effect was not mimicked by either muscimol or (-)-baclofen nor was it prevented by bicuculline or picrotoxin. The GABA effect was, however, blocked by GABA uptake inhibitors and was Na+ dependent. Gly increased [3H]GABA release from cerebellar synaptosomes (EC50, 110.7 microM) in a strychnine- and 7-chlorokynurenic acid-insensitive manner. This effect was Na+ dependent. The effects of GABA on [3H]Gly release seen in spinal cord and cerebellum could be reproduced also with cerebrocortical synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The excitatory action of kainic and glutamic acids in chick whole retina was demonstrated as an immediate stimulation of the release of labeled gamma-aminobutyric acid (GABA) and glycine in a superfusion system. This stimulatory effect was 3-10 times greater than that produced by a depolarizing K+ concentration; in addition, it was independent of Ca2+ in the medium, but notably inhibited when Na+ was omitted from the medium. Under identical experimental conditions, neither kainic nor glutamic acid had any effect on the release of labeled dopamine or alpha-aminoisobutyric acid, thus indicating that their effect is not unspecific or due to cell damage. Similar although less marked stimulation of labeled GABA and glycine release by kainic acid was obtained in subcellular retinal fractions, particularly in fraction P1, which contained photoreceptor terminals and outer segments. This stimulation was also Ca2+ independent and greatly reduced when Na+ was omitted from the medium. It is suggested that the stimulation of GABA release by kainic and glutamic acids is probably due to a Na+-dependent, carrier-mediated mechanism that responds to the entry of Na+ produced by the interaction of glutamic and kainic acids with retinal membranes. In cortical or striatal slices from mouse brain, these acids had a negligible stimulatory effect on GABA and dopamine release.  相似文献   

10.
Using strictly controlled ionic conditions we have demonstrated, in agreement with previous findings (Lotersztajn et al. (1981) J. Biol. Chem. 256, 11209-11215; Lotersztajn, S. and Pecker, F. (1982) J. Biol. Chem. 257, 6638-6641) a Ca2+-stimulated ATPase in rat liver plasma membranes which is detectable at low free Mg2+ concentrations (normally fulfilled by endogenous levels) but not at free Mg2+ concentrations greater than about 10(-5) M. The findings reported here also suggest that this (Ca2+ + Mg2+)-ATPase is activated by EGTA or one of its liganded species. Furthermore, this is probably an intrinsic property of the enzyme as it was found to be independent of the isolation technique. The stimulation by EGTA appears to be a function both of free Ca2+ concentration and of one or more liganded species of EGTA and it is also inhibited at high free Mg2+ concentrations (approx. 10(-5) M). The specificity of the EGTA effect on ATPase activity is studied with respect to other, widely used, chelating agents namely HEEDTA, EDTA and CDTA. Of these, only CDTA shares the effect, although the concentration dependence of the activation is different from EGTA, suggesting that there is some degree of structural specificity involved rather than a generalised effect of complexed Ca2+.  相似文献   

11.
Environmental Mg2+ was found to influence the K+/Na+ exchange rate of metabolizing yeast. Addition of EDTA increased the exchange rate and Mg2+ reversed the effect of EDTA. Yeast starved in the absence of Mg2+ exchanged cellular K+ or Na+ for external H+ when maintained at acidic pH. The exchange rate depended on cellular pH and showed the same kinetics for both K+ and Na+. At acidic pH, the presence of external cations neither inhibited H+ absorption nor changed the cation/H+ 1 : 1 stoichiometry. At neutral pH, external cations inhibited H+ influx but did not change the cation efflux. The K+/Na+ exchange is discussed as electrically coupled and the K+/H+ and Na+/H+ exchanges as electroneutral antiports.  相似文献   

12.
Intracranial microdialysis was used to investigate the origin of extracellular gamma-aminobutyric acid (GABA) in the ventral pallidum. Changes in basal GABA levels in response to membrane depolarizers, ion-channel blockers, and receptor agonists were determined. Antagonism of Ca2+ fluxes with high Mg2+ in a Ca(2+)-free perfusion buffer decreased GABA levels by up to 30%. Inhibition of voltage-dependent Na+ channels by the addition of tetrodotoxin also significantly decreased basal extracellular GABA concentrations by up to 45%, and blockade of Ca2+ and Na+ channels with verapamil reduced extracellular GABA by as much as 30%. The addition of either the GABAA agonist, muscimol, or the GABAB agonist, baclofen, produced a 40% reduction in extracellular GABA. GABA release was stimulated by high K+ and the addition of veratridine to increase Na+ influx. High K(+)-induced release was predominantly Ca(2+)-dependent, whereas the effect of veratridine was potentiated in the absence of extracellular Ca2+. Both high K(+)- and veratridine-induced elevations in extracellular GABA were inhibited by baclofen, whereas only veratridine-induced release was antagonized by muscimol. These results demonstrate that at least 50% of basal extracellular GABA in the ventral pallidum is derived from Ca(2+)- or Na(+)-dependent mechanisms. They also suggest that Na(+)-dependent release of GABA via reversal of the uptake carrier can be shown in vivo.  相似文献   

13.
Toxic peptides II-9.2.2 and II-10, purified from Centruroides noxius venom, bear highly homologous N-terminal amino acid sequences, and both toxins are lethal to mice. However, only toxin II-10 is active on the voltage-clamped squid axon, selectively decreasing the voltage-dependent Na+ current. Here, we have tested toxins II-9 and II-10 on synaptosomes from mouse brain: both toxins increased the release of gamma-[3H]aminobutyric acid ([3H]GABA). Their effect was completely blocked by tetrodotoxin or by the absence of external Na+. Also, both toxins increased Na+ permeability in isolated nerve terminals. Besides the observation that toxin II-9 is active on synaptosomes, the effect of toxin II-10 in this preparation is opposite to that observed in the squid axon. Thus, our results reflect functional differences between the populations of Na+ channels in mouse brain synaptosomes and in the squid axon. The release of GABA evoked by these toxins from synaptosomes required external Ca2+ and was blocked by Ca2+ channel blockers (verapamil and Co2+). This latter observation is in sharp contrast to the releasing action of veratrine, which evoked release even in the absence of external Ca2+. Furthermore, the action of both C. noxius toxins was potentiated by veratrine, a result suggesting they have different mechanisms of action. Among drugs that release neurotransmitters by increasing Na+ permeability, it is noteworthy that scorpion toxins are the only ones yet reported to have a strict requirement for external Ca2+.  相似文献   

14.
In the presence of Ca2+ (2.5 mM) and using [14C]arachidonoyl phosphatidylinositol (PI) membrane as substrate, phosphatidylinositol-specific phospholipase C (PI-PLC) (EC 3.1.4.10) in rat brain synaptosomes was activated by deoxycholate but not taurocholate. Calcium stimulated enzymic hydrolysis by both detergents, but the stimulatory effect of taurocholate was less than that of deoxycholate. Peak stimulation for deoxycholate was observed at 1 mg/ml, whereas that for taurocholate was 4 mg/ml. When 1 mM EDTA was added to the taurocholate (4 mg/ml) and Ca2+ (3.5 mM) system, synaptosomal PI-PLC activity was greatly stimulated, to almost the same level as the deoxycholate + Ca2+ system. This system required the presence of all three factors, and EGTA could not effectively replace EDTA in the stimulatory action. The detergent-induced hydrolysis of synaptosomal PI by the deoxycholate + Ca2+ and the taurocholate + Ca2+ + EDTA systems was strongly inhibited by divalent metal ions such as Zn2+, Cu2+, Pb2+, and Fe2+, whereas Mg2+ and Ca2+ were ineffective. Nevertheless, only the deoxycholate + Ca2+ system was responsive to enzyme inhibition by membrane-perturbing agents such as lysophospholipids and free fatty acids. The specific requirement for EDTA in the taurocholate system may be due to the release of a pool of inhibitory divalent metal ions from the membranes.  相似文献   

15.
The effects of two organic Ca2+ antagonists (verapamil and nitrendipine) and of two inorganic Ca2+ channel blockers (Co2+ and ruthenium red) on the Na+-dependent release of gamma-amino-n-butyric acid (GABA) triggered by veratrine and monensin in the absence of external Ca2+ were studied in mouse brain synaptosomes. Ca2+-independent release of GABA stimulated by the Na+ channel activator veratrine was inhibited with micromolar concentrations of verapamil and nitrendipine. In contrast, GABA release induced by the Na+ ionophore monensin was insensitive to the organic Ca2+ antagonists. Verapamil also failed to modify A23187-stimulated release of GABA in the presence of Ca2+ but inhibited high K+-induced release of the transmitter. Co2+ partially diminished veratrine-induced release but did not change monensin-induced release. Releasing responses to monensin and veratrine were insensitive to ruthenium red, which inhibited the Ca2+-dependent component of GABA release evoked by high K+ depolarization. These data demonstrate that the mechanism of inducing GABA release is different for veratrine and monensin, as evidenced by their differing sensitivities to inhibition by Ca2+ channel antagonists and organic Ca2+ blockers. It is concluded that voltage-sensitive Ca2+ channels of the presynaptic membrane are not involved in the inhibitory action of Ca2+ antagonists on the Na+-dependent, Ca2+-independent mechanism of GABA release.  相似文献   

16.
In rat erythrocytes, the regulation of Na+/Mg2+ antiport by protein kinases (PKs), protein phosphatases (PPs), intracellular Mg2+, ATP and Cl- was investigated. In untreated erythrocytes, Na+/Mg2+ antiport was slightly inhibited by the PK inhibitor staurosporine, slightly stimulated by the PP inhibitor calyculin A and strongly stimulated by vanadate. PMA stimulated Na+/Mg2+ antiport. This effect was completely inhibited by staurosporine and partially inhibited by the PKC inhibitors Ro-31-8425 and BIM I. Participation of other PKs such as PKA, the MAPK cascade, PTK, CK I, CK II, CAM II-K, PI 3-K, and MLCK was excluded by use of inhibitors. Na+/Mg2+ antiport in rat erythrocytes can thus be stimulated by PKCalpha. In non-Mg2+ -loaded erythrocytes, ATP depletion reduced Mg2+ efflux and PMA stimulation in NaCl medium. A drastic activation of Na+/Mg2+ antiport was induced by Mg2+ loading which was not further stimulated by PMA. Staurosporine, Ro-31-8425, BIM I and calyculin A did not inhibit Na+/Mg2+ antiport of Mg2+ -loaded cells. Obviously, at high [Mg2+]i Na+/Mg2+ antiport is maximally stimulated. PKCalpha or PPs are not involved in stimulation by intracellular Mg2+. ATP depletion of Mg2+ -loaded erythrocytes reduced Mg2+ efflux and the affinity of Mg2+ binding sites of the Na+/Mg2+ antiporter to Mg2+. In non-Mg2+ -loaded erythrocytes Na+/Mg2+ antiport essentially depends on Cl-. Mg2+ -loaded erythrocytes were less sensitive to the activation of Na+/Mg2+ antiport by [Cl-]i.  相似文献   

17.
Magnesium has been shown to modulate the Na+-stimulated release of Ca2+ (Na/Ca exchange) from brain mitochondria. The presence of 5 mM MgCl2 extramitochondrially inhibits the Na/Ca exchange as much as 70%. Additionally, Na+-stimulated Ca2+ release is enhanced by the presence of divalent chelators, this stimulation also being inhibited by the addition of excess Mg2+. The inhibitory effect of Mg2+ and the enhancement by chelating agents were both reversible. Heart mitochondria exhibit a similar enhancement of Na/Ca exchange by chelators and inhibition by MgCl2, though not as pronounced.  相似文献   

18.
Rat cerebral cortex synaptosomes were exposed in superfusion to various depolarizing stimuli and the release of somatostatin-like immunoreactivity (SRIF-LI) was measured by means of a radioimmunoassay procedure. High KCl (9-50 mM) concentration dependently evoked SRIF-LI release; the evoked overflow reached a plateau at 25 mM KCl and was completely abolished when Ca2+ ions were omitted from the superfusion medium, independently of the concentration of KCl used. The 15 mM K(+)-evoked release of SRIF-LI increased sharply as the Ca2+ concentration was raised to 0.8 mM, then leveled off and reached a plateau at 1.2 mM. The 15 mM K(+)-evoked overflow, but not the spontaneous outflow, was partially decreased (50%) by 1 microM tetrodotoxin. The presence in the superfusion fluid of a mixture of peptidase inhibitors did not improve the recovery of SRIF-LI both in the absence and in the presence of high K+. Exposure of synaptosomes to veratrine (1-50 microM) induced release of SRIF-LI in a concentration-dependent way. The effect of the alkaloid was strictly Ca2+ and tetrodotoxin sensitive. Replacement of extracellular Na+ by sucrose caused an acceleration of the spontaneous SRIF-LI outflow that was inversely correlated to the Na+ content in the superfusion medium. The release evoked by the sodium-deprived media did not exhibit any calcium dependence. HPLC analysis of the samples collected during superfusion showed that greater than 90% of the SRIF-LI released either during the spontaneous outflow or by 15 mM KCl was represented by SRIF-14 (SRIF-28(14-28]. These values reflected the ratio SRIF-14/SRIF-28 found in synaptosomes at the end of the experiments.  相似文献   

19.
S Uribe  P Rangel  J P Pardo 《Cell calcium》1992,13(4):211-217
The interactions of Ca2+ with mitochondria from Saccharomyces cerevisiae were explored. Mitochondria were loaded with the metallochromic dye Fluo-3 to measure the concentration of free calcium in the matrix. Addition of EGTA or Ca2+ led to fluctuations in mitochondrial free calcium between 120 and 400 nM. Ca2+ variations were slower at 4 degrees C than at 25 degrees C or in the presence of phosphate instead of acetate. The net uptake of 45Ca2+ was higher with phosphate than with acetate. The optimum pH for Ca2+ uptake was 6.8. Ruthenium red did not affect the uptake of Ca2+. Addition of antimycin-A or uncouplers led to a small and transient release of Ca2+. Addition of EGTA or the monovalent cations Na+ or K+ resulted in higher release of Ca2+. Site I but not site II dependent O2 consumption was partially inhibited by EGTA. The effect of Ca2+ on NADH oxidation is similar to results reported with enzymes from mammalian sources which use NADH, such as the pyruvate, isocitrate and oxoglutarate dehydrogenases.  相似文献   

20.
Guinea-pig synaptosomes possess two functional pools of 4-aminobutyrate (GABA). One is rapidly labelled by added [14C]GABA, is steadily released in a Ca2+-independent manner when the Na+ electrochemical potential across the plasma membrane is collapsed, and is depleted by the GABA analogue 2,4-diaminobutyrate (DABA), all of which is consistent with a cytosolic location. A second, noncytosolic compartment only slowly equilibrates with exogenous [14C]GABA, is not depleted by DABA, but can release 350 pmol of endogenous GABA/mg of protein (8% of the total intrasynaptosomal GABA) within 15 s of depolarization in the presence of Ca2+. Ca2+-independent release occurs by thermodynamic reversal of the plasma membrane uptake pathway following artifactually prolonged depolarization, whereas Ca2+-dependent release is consistent with physiological exocytosis from vesicular stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号