首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Protein kinase C (PKC) has been shown to be activated by parathyroid hormone (PTH) in osteoblasts. Prior evidence suggests that this activation mediates responses leading to bone resorption, including production of the osteoclastogenic cytokine interleukin-6 (IL-6). However, the importance of specific PKC isozymes in this process has not been investigated. A selective antagonist of PKC-β, LY379196, was used to determine the role of the PKC-β isozyme in the expression of IL-6 in UMR-106 rat osteoblastic cells and in bone resorption in fetal rat limb bone organ cultures. PTH, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced translocation of PKC-α and -βI to the plasma membrane in UMR-106 cells within 5 min. The stimulation of PKC-βI translocation by PTH, TNF-α or IL-1β was inhibited by LY379196. In contrast, LY379196 did not affect PTH, TNF-α-, or IL-1β-stimulated translocation of PKC-α. PTH, TNF-α, and IL-1β increased luciferase expression in UMR-106 cells transiently transfected with a −224/+11 bp IL-6 promoter-driven reporter construct. The IL-6 responses were also attenuated by treatment with LY379196. Furthermore, LY379196 inhibited bone resorption elicited by PTH in fetal rat bone organ cultures. These results indicate that PKC-βI is a component of the signaling pathway that mediates PTH-, TNF-α-, and IL-1β-stimulated IL-6 expression and PTH-stimulated bone resorption.  相似文献   

2.
3.
4.
Excitotoxic neuronal death mediated by N-methyl-D -aspartate (NMDA) glutamate receptors can contribute to the extended brain damage that often accompanies trauma or disease. Both the inflammatory cytokine tumor necrosis factor-α (TNF-α) and nicotine have been identified as possible neuroprotective agents to NMDA assault. We find that TNF-α protection of a subpopulation of cultured cortical neurons to chronic NMDA-mediated excitotoxic death requires both the activation of the p55/TNFRI, but not p75/TNFRII, and the release of endogenous TNF-α. Nicotine protection to NMDA was mediated through an α-bungarotoxin-sensitive receptor. When coapplied, neuroprotection to NMDA by either TNF-α or nicotine was abolished but could be recovered with α-bungarotoxin. These results suggest that the cytokine TNF-α and α-bungarotoxin-sensitive nicotinic neurotransmitter receptors confer neuroprotection through potentially antagonistic pathways. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 29–36, 1998  相似文献   

5.
Excessive production of reactive oxygen species (ROS) is a key phenomenon in tumor necrosis factor (TNF)-α-induced cell death. However, the role of ROS in necroptosis remains mostly elusive. In this study, we show that TNF-α induces the mitochondrial accumulation of superoxide anions, not H2O2, in cancer cells undergoing necroptosis. TNF-α-induced mitochondrial superoxide anions production is strictly RIP3 expression-dependent. Unexpectedly, TNF-α stimulates NADPH oxidase (NOX), not mitochondrial energy metabolism, to activate superoxide production in the RIP3-positive cancer cells. In parallel, mitochondrial superoxide-metabolizing enzymes, such as manganese-superoxide dismutase (SOD2) and peroxiredoxin III, are not involved in the superoxide accumulation. Mitochondrial-targeted superoxide scavengers and a NOX inhibitor eliminate the accumulated superoxide without affecting TNF-α-induced necroptosis. Therefore, our study provides the first evidence that mitochondrial superoxide accumulation is a consequence of necroptosis.  相似文献   

6.
Induction of tumour necrosis factor‐α (TNF‐α) expression leads to myocardial depression during sepsis. However, the underlying molecular mechanisms are not fully understood. The aim of this study was to investigate the role of Rac1 in TNF‐α expression and cardiac dysfunction during endotoxemia and to determine the involvement of phosphoinositide‐3 kinase (PI3K) in lipopolysaccharide (LPS)‐induced Rac1 activation. Our results showed that LPS‐induced Rac1 activation and TNF‐α expression in cultured neonatal mouse cardiomyocytes. The response was inhibited in Rac1 deficient cardiomyocytes or by a dominant‐negative Rac1 (Rac1N17). To determine whether PI3K regulates Rac1 activation, cardiomyocytes were treated with LY294002, a PI3K selective inhibitor. Treatment with LY294002 decreased Rac1 activity as well as TNF‐α expression stimulated by LPS. Furthermore, inhibition of PI3K and Rac1 activity decreased LPS‐induced superoxide generation which was associated with a significant reduction in ERK1/2 phosphorylation. To investigate the role of Rac1 in myocardial depression during endotoxemia in vivo, wild‐type and cardiomyocyte‐specific Rac1 deficient mice were treated with LPS (2 mg/kg, i.p.). Deficiency in Rac1 significantly decreased myocardial TNF‐α expression and improved cardiac function during endotoxemia. We conclude that PI3K‐mediated Rac1 activation is required for induction of TNF‐α expression in cardiomyocytes and cardiac dysfunction during endotoxemia. The effect of Rac1 on TNF‐α expression seems to be mediated by increased NADPH oxidase activity and ERK1/2 phosphorylation.  相似文献   

7.
The circular dichroism (CD) spectrum of tumor necrosis factor-α has been measured into the vacuum UV to 168 nm. Analysis of the CD for secondary structure is in good agreement with X-ray diffraction results, but the analysis is somewhat unstable. Adding the CD of this protein together with its X-ray determined secondary structure to the basis set should improve subsequent analyses of CD spectra for other all-β proteins.  相似文献   

8.
Cultured human melanoma cells were found to secrete TGF-β mostly in latent biologically inactive form but in addition five of six melanoma cell lines studied produced in conditioned culture medium active TGF-β in the range from 370 to 610 pg per 106 cells per 24 h. A distinct characteristic of these melanoma cell lines is that they form active surface-bound plasmin by the activation of plasminogen with surface-bound tissue-type plasminogen activator. The present study was performed to assess the role of plasmin in the process of latent TGF-β activation in the melanoma cell lines. No direct correlation was found between cell-associated plasmin activity and the amount of active TGF-β present in the conditioned medium of individual cell lines. The melanoma cell lines exhibited diverse responses to exogenous active TGF-β1; three cell lines were growth-stimulated, two were growth-inhibited, and one had a very low sensitivity to the growth factor. The active TGF-β produced by the melanoma cells was found to inhibit the natural killer cell function of peripheral blood lymphocytes, suggesting that it may have an immunosuppressive effect and a role in the development of melanomas. © 1996 Wiley-Liss, Inc.  相似文献   

9.
10.
Hematopoietic homeostasis depends on the maintenance of hematopoietic stem cells (HSCs), which are regulated within a specialized bone marrow (BM) niche. When HSC sense external stimuli, their adhesion status may be critical for determining HSC cell fate. The cell surface molecule, integrin αvβ3, is activated through HSC adhesion to extracellular matrix and niche cells. Integrin β3 signaling maintains HSCs within the niche. Here, we showed the synergistic negative regulation of the pro‐inflammatory cytokine interferon‐γ (IFNγ) and β3 integrin signaling in murine HSC function by a novel definitive phenotyping of HSCs. Integrin αvβ3 suppressed HSC function in the presence of IFNγ and impaired integrin β3 signaling mitigated IFNγ‐dependent negative action on HSCs. During IFNγ stimulation, integrin β3 signaling enhanced STAT1‐mediated gene expression via serine phosphorylation. These findings show that integrin β3 signaling intensifies the suppressive effect of IFNγ on HSCs, which indicates that cell adhesion via integrin αvβ3 within the BM niche acts as a context‐dependent signal modulator to regulate the HSC function under both steady‐state and inflammatory conditions.  相似文献   

11.
Tumour necrosis factor (TNF)‐α has been considered to induce ischaemia‐reperfusion injury (IRI) of liver which is characterized by energy dysmetabolism. Peroxisome proliferator–activated receptor‐γ co‐activator (PGC)‐1α and mitofusion2 (Mfn2) are reported to be involved in the regulation of mitochondrial function. However, whether PGC‐1α and Mfn2 form a pathway that mediates liver IRI, and if so, what the underlying involvement is in that pathway remain unclear. In this study, L02 cells administered recombinant human TNF‐α had increased TNF‐α levels and resulted in down‐regulation of PGC‐1α and Mfn2 in a rat liver IRI model. This was associated with hepatic mitochondrial swelling, decreased adenosine triphosphate (ATP) production, and increased levels of reactive oxygen species (ROS) and alanine aminotransferase (ALT) activity as well as cell apoptosis. Inhibition of TNF‐α by neutralizing antibody reversed PGC‐1α and Mfn2 expression, and decreased hepatic injury and cell apoptosis both in cell culture and in animals. Treatment by rosiglitazone sustained PGC‐1α and Mfn2 expression both in IR livers, and L02 cells treated with TNF‐α as indicated by increased hepatic mitochondrial integrity and ATP production, reduced ROS and ALT activity as well as decreased cell apoptosis. Overexpression of Mfn2 by lentiviral‐Mfn2 transfection decreased hepatic injury in IR livers and L02 cells treated with TNF‐α. However, there was no up‐regulation of PGC‐1α. These findings suggest that PGC‐1α and Mfn2 constitute a regulatory pathway, and play a critical role in TNF‐α‐induced hepatic IRI. Inhibition of the TNF‐α or PGC‐1α/Mfn2 pathways may represent novel therapeutic interventions for hepatic IRI.  相似文献   

12.
Ceramide, as a second messenger, initiates one of the major signal transduction pathways in tumor necrosis factor-α (TNF-α)-induced apoptosis. Glucosylceramide synthase (GCS) catalyzes glycosylation of ceramide and produces glucosylceramide. By introduction of the GCS gene, cytotoxic resistance to TNF-α has been conferred in human breast cancer cells. MCF-7/GCS-transfected cells expressed 4.1-fold higher levels of GCS activity and exhibited a 15-fold (P < 0.0005) greater EC50 for TNF-α, compared with the parental MCF-7 cell line. DNA fragmentation and DNA synthesis studies showed that TNF-α had little influence on the induction of apoptosis or on growth arrest in MCF-7/GCS cells, compared to MCF-7 cells. These studies reveal that TNF-α resistance in MCF-7/GCS cells is closely related to ceramide hyperglycosylation, a hallmark of this transfected cell line, and resistance was not aligned with changes in TNF receptor 1 expression. This work demonstrates that GCS, which catalyzes ceramide glycosylation, potentiates cytotoxic resistance to TNF-α.  相似文献   

13.
Peroxisome proliferator‐activated receptors (PPARs) mediate the effects of various ligands, known as peroxisome proliferators, a heterogeneous class of compounds including industrial chemicals, pharmaceuticals, and biomolecules such as fatty acids and eicosanoids. Among peroxisome proliferators, fibrate derivatives are considered specific ligands for PPARα, whereas eicosanoids, such as PGJ2, for PPARγ. The study aimed to clarify the relation between PPARs and apoptosis or proliferation on the same type of cells, using clofibrate as specific ligand of PPARα and PGJ2 as specific ligand of PPARγ. The cells used were human hepatocarcinoma HepG2 cells. The results showed that PPARα protein content increased in HepG2 cells treated with clofibrate, causing apoptosis in a time‐ and concentration‐dependent way, as evidenced by the citofluorimetric assay and determination of BAD, myc and protein phosphatase 2A protein content. It also emerged that PPARγ increased in the same cells when treated with a specific ligand of this PPAR; in this case the increase of PPARγ did not cause an increase of apoptosis, but a time‐ and concentration‐dependent inhibition of cell proliferation, evidenced by decreased cell numbers and increased number of cells in the G0/G1 phase of the cycle. It may be concluded that PPARα is chiefly related to apoptosis and PPARγ to cell proliferation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
15.
16.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

17.
18.
We previously demonstrated that tumor necrosis factor-α (TNF-α) induces rapid human neutrophil apoptosis. In this paper, we examined which of the TNF receptors, p55 kDa TNF receptor (55-R) or p75 kDa TNF receptor (75-R), or both are involved in this process using specific rabbit antisera. Antibodies to 55-R (anti55-R) or 75-R (anti75-R) alone did not induce neutrophil apoptosis. Further addition of cycloheximide and anti-rabbit immunoglobulin to anti55-R but not to anti75-R accelerated apoptosis, although anti75-R augmented the capacity of anti55-R to do so. These results suggest that 55-R is a prerequisite for TNF-α induced neutrophil apoptosis.  相似文献   

19.
In the present study, a lethal model of pulmonary candidiasis was established using granulocytopenic mice with cyclophosphamide. These mice started to die 1 day after infection and had all died within the next 48 hr. The counts of live C. albicans in the lung gradually increased with time, while the organisms were quickly eliminated in the normal mice. From the histology and measurements on bronchoalveolar lavage fluid (BALF), polymorphonuclear cells (PMN) response was almost zero up to 24 hr, and then a weak but significant response was observed at 48 hr, while a marked accumulation of PMN was detected from as early as 6 hr in normal mice. In contrast, macrophages had accumulated in BALF by 48 hr in granulocytopenic mice, but not in normal mice. Both in serum and BALF, a considerable level of tumor necrosis factor-α (TNF-α) was detected from 6 hr, peaking at 24 to 48 hr, while in normal mice the quantity was under the detection limit in serum and very low in BALF. The effects of administering granulocyte colony-stimulating factor (G-CSF) on these parameters were next examined. G-CSF significantly prolonged the survival time of granulocytopenic mice, promoted the clearance of organisms through increasing the counts of PMN in the lung, and strongly inhibited the production of TNF-α both in BALF and serum. These results suggest that this cytokine does not protect them, but plays some role in their death due to candidial infection in granulocytopenic mice.  相似文献   

20.
The maturation of connective tissue involves the organization of collagen fibres by resident fibroblasts. Fibroblast attachment to collagen has been demonstrated to involve cell surface receptors, integrins of the β1 family. Integrins are associated with cytoplasmic actin of microfilaments either directly or through focal adhesions. The major actin isoform of fibroblast microfilaments is β actin and to a lesser extent α smooth muscle (α SM) actin. Cultured human dermal fibroblasts derived from adult dermis, newborn foreskin or keloid scar were grown on either uncoated or collagen-coated surfaces. The expression and synthesis of both α2β1 integrin and α SM actin were followed by immunohistology and immunoprecipitation. Fibroblasts on uncoated surfaces expressed little α2β1 integrin on their surface, while 20 per cent of them demonstrated α SM actin within microfilaments. Fibroblasts grown on a collagen-coated surface minimally expressed α SM actin in microfilament structures and a majority of the cells were positive for α2β1 integrin on their membranes. Using [35S]-methionine incorporation and immunoprecipitation, it was shown that fibroblasts grown in uncoated dishes synthesized more α SM actin than fibroblasts grown on collagen-coated dishes. In contrast, fibroblasts grown on collagen coated dishes synthesized more α2β1 integrin compared to the same cells grown on uncoated dishes. Fibroblasts maintained on a type I collagen upregulate the expression and synthesis of α2β1 integrin, and downregulate the expression and synthesis of α SM actin. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号