首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The processes determining where seeds fall relative to their parent plant influence the spatial structure and dynamics of plant populations and communities. For animal dispersed species the factors influencing seed shadows are poorly understood. In this paper we test the hypothesis that the daily temporal distribution of disperser behaviours, for example, foraging and movement, influences dispersal outcomes, in particular the shape and scale of dispersal curves. To do this, we describe frugivory and the dispersal curves produced by the southern cassowary, Casuarius casuarius, the only large-bodied disperser in Australia’s rainforests. We found C. casuarius consumed fruits of 238 species and of all fleshy-fruit types. In feeding trials, seeds of 11 species were retained on average for 309 min (±256 SD). Sampling radio-telemetry data randomly, that is, assuming foraging occurs at random times during the day, gives an estimated average dispersal distance of 239 m (±207 SD) for seeds consumed by C. casuarius. Approximately 4% of seeds were dispersed further than 1,000 m. However, observation of wild birds indicated that foraging and movement occur more frequently early and late in the day. Seeds consumed early in the day were estimated to receive dispersal distances 1.4 times the ‘random’ average estimate, while afternoon consumed seeds received estimated mean dispersal distances of 0.46 times the ‘random’ estimate. Sampling movement data according to the daily distribution of C. casuarius foraging gives an estimated mean dispersal distance of 337 m (±194 SD). Most animals’ behaviour has a non-random temporal distribution. Consequently such effects should be common and need to be incorporated into seed shadow estimation. Our results point to dispersal curves being an emergent property of the plant–disperser interaction rather than being a property of a plant or species.  相似文献   

3.
We studied the effect of seed size on dispersal by comparing dispersal distances in five rodent-dispersed fagaceous species (Lithocarpus harlandii, Quercus variabilis, Q. serrata, Cyclobalanopsis glauca, Castanopsis fargesii) with different seed size. We tracked individual seeds with coded tin-tags in two stands over 3 years in a subtropical evergreen broadleaved forest in the Dujiangyan Region of Sichuan Province, Southwest China. Our seed tracking data indicate that dispersal distances (including mean, maximum and distribution range) of seeds in primary caches and of seeds eaten after dispersal significantly increased with seed size, for both stands and all years. In addition, larger seeds (L. harlandii and Q. variabilis) were re-cached more often than smaller ones, which further reduced the relative density among caches and extended dispersal distances. Our findings indicate that greater dispersal distances for larger seeds might benefit the evolution of differences in seed size, and that scatter-hoarding might be advantageous for rodent-dispersed tree species.  相似文献   

4.
Anette  Baur 《Journal of Zoology》1993,230(1):87-100
The land snails Chondrina clienta and Baleaperversa compete most probably for a limited food resource (calcicolous lichens) on rock-faces on the Baltic Island of Öland (Sweden). Two laboratory and three field experiments were conducted to determine whether food availability and intra- and interspecific interactions affect the dispersal tendency in C. clienta . Under laboratory conditions, individuals of C. clienta showed a higher tendency to disperse from previously grazed than from ungrazed pieces of limestone (their natural substratum), whereas conspecific density or presence of B. perversa had no effect. However, when snails had been kept on the pieces of limestone for 40 days prior to testing, dispersal tended to increase with increasing density of conspecifics. In the field, marked individuals of C. clienta were released at different densities on vertical rock walls. Density of conspecifics at the release points did not influence the distances travelled. Similarly, intraspecific density did not affect dispersal when the snails' food resource (lichens) had been experimentally reduced on the quarry walls. Neither was the dispersal tendency influenced by different crowding conditions experienced for 40 days prior to release. The discrepancy between the results of laboratory and field experiments suggest that additional factors acting on dispersal are of importance in natural populations of C. clienta .  相似文献   

5.
1. Myrmecochory sensu stricto is an ant–plant mutualism in which non‐granivorous ants disperse plant diaspores after feeding on their nutrient‐rich seed appendage, the elaiosome. Phenological traits associated with the diaspore can influence the behaviour of ants and thus their ultimate efficiency as seed dispersers. 2. This study investigated how a contrasting availability of seeds (20 vs. 200 seeds) from the diplochorous Chelidonium majus (Papaveraceae, Linnaeus) plant species influences the behaviour of Myrmica rubra (Formicidae, Linnaeus) ants, from the retrieval of seeds until their dispersal outside the ant nest. 3. Regardless of seed abundance, the ants collected the first diaspores at similar rates. Then, seed retrieval sped up over time for large seed sources until satiation took place with only one‐third of the tested colonies wholly depleting abundant seed sources. 4. No active recruitment by trail‐laying ants was triggered, even to an abundant seed source 5. In both conditions of seed abundance, the majority of the diaspores retrieved inside the nest were discarded with the elaiosome removed and were dispersed at similar distances from the nest. 6. The paper concludes with a discussion of how the quantity of seeds released by a plant with a dual mode of dispersal can potentially influence the behaviour of ant dispersers and hence the dispersal efficiency derived from myrmecochory.  相似文献   

6.
Aim The genetic structure of many plant species is heavily dependent on their pollinators and seed dispersers, and can thus be altered if either of the associated mutualistic interactions is disrupted. In this study we assess the genetic diversity and structure and infer the seed/pollen gene‐flow patterns among insular populations of Daphne rodriguezii, a shrub pollinated and dispersed by animals that has lost its only disperser (the lizard Podarcis lilfordi) in most of its populations. Location The island of Menorca and the islet of Colom (Balearic Islands, Western Mediterranean). Methods To assess the contribution of gene flow via pollen and seeds to the genetic structure of D. rodriguezii we used amplified fragment length polymorphisms (AFLPs; seeds and pollen) and plastid DNA sequences (cpDNA; seeds). We sampled individuals from all population nuclei of the species (12–19 adults per population): one population in Colom, where the plant–lizard interaction persists, and four in Menorca, where the seed dispersal mutualism disappeared with the extinction of the lizard. Results The highest heterozygosity values were found in Colom and in its closest population (Favàritx), whereas values were lower in the smallest Menorcan populations, which also had higher relatedness among individuals. We found distinct genetic signals between AFLP and cpDNA analyses. While AFLP markers showed low differentiation between populations, cpDNA showed a clear differentiation between them. Main conclusions Our results point to negative impacts of the disperser loss on genetic diversity and relatedness in the smaller and more isolated populations. They also suggest an old isolation by seeds, probably occurring well before the extinction of the lizard (c. 2000 years ago). Gene flow was maintained via pollination; however, the seed disperser loss may ultimately hinder pollinator‐mediated gene flow, as a result of reduced probabilities of effective pollination among increasingly distant and scarce individuals.  相似文献   

7.
种子扩散是植物更新和扩大分布区的一种重要途径。鼠类采取不同的种子扩散和贮藏策略,以应对食物短缺,同时也促进了植物种子扩散。为应对鼠类对植物种子的过度取食,种子进化出了一系列物理、化学等防御特征。其中种壳厚度作为一种物理防御策略,是影响鼠类贮藏行为和种子命运的关键因素。本研究拟通过去除天然栓皮栎(Quercus variabilis)种子的外壳,再在种仁外包被1、2、4、6不同层数的聚乙烯薄膜,模拟种壳厚度,准确控制种壳厚度。2020年10月—2021年1月,在四川都江堰森林生境中释放人工种壳包被的种子,研究人工种壳厚度对鼠类介导的种子扩散和命运的影响。结果表明:(1)鼠类优先扩散种壳较薄(1层薄膜包被)的人工种子;随着种壳厚度的增加,扩散速率逐渐降低,种壳最厚(6层薄膜包被)的种子扩散最慢(P < 0.001);(2)鼠类喜好分散贮藏1层、2层薄膜包被的种子;当种壳厚度增加至包被4层、6层薄膜时,分散贮藏比例显著降低(P < 0.05);(3)鼠类偏好集中贮藏4层薄膜包被的种子(P < 0.05);(4)不同种壳厚度的种子扩散距离无显著差异(P > 0.05);(5)种壳较薄(1层薄膜包被)的种子分散贮藏率在3 m范围内比例较高。采用聚乙烯薄膜包被是模拟种子外壳的可行方法,并可用于评估种壳厚度对鼠类种子贮藏行为和种子命运的影响等相关研究。  相似文献   

8.
2009和2010年秋季,在黑龙江省伊春市带岭区东方红林场研究了蒙古栎结实量及啮齿动物密度变化对胡桃楸、红松、蒙古栎、毛榛和平榛5种木本植物种子扩散的影响.结果表明:在小兴安岭林区,啮齿动物种群数量具有年际变化,2009年小型啮齿动物的总捕获率(31.0%)显著高于2010年(16.7%);2009年蒙古栎种子雨密度(6.2±2.1粒·m-2)和种子相对丰富度(20.O)均显著低于2010年(26.7±10.2粒·m-2和160.0).2009年,除胡桃楸种子外,其他种子全部被扩散或者被原地取食,其中蒙古栎种子被分散埋藏的比例最高,且种子平均扩散距离最大;2010年,胡桃楸种子被分散埋藏的比例最高,且种子平均扩散距离最大.研究区蒙古栎种子相对丰富度是影响其他木本植物种子扩散的重要因素.  相似文献   

9.
Fleshy-fruited plants are usually dispersed by an array of frugivores, differing in the effectiveness of the dispersal service they provide to the plant. Body size differences among frugivores are hypothesized to affect seed dispersal distances and consequently their effectiveness as dispersers. We tested this hypothesis by comparing the effectiveness of two passerine birds, grackles ( Onychognathus tristramii ) and bulbuls ( Pycnonotus xanthopygos ), dispersing the desert shrub Ochradenus baccatus . Laboratory experiments, quantifying gut retention time and the effect on germination, were combined with field observations quantifying bird movements and fruit consumption rates. An empirically parameterized mechanistic model showed that the two dispersers switch roles as a function of spatial-scale: while most seeds within the local habitat were dispersed by bulbuls, the larger grackles were exclusively responsible for between-patches, long-distance dispersal. We suggest that distance-related differences are common and important to plant fitness, and thus should explicitly be considered in studies of disperser effectiveness.  相似文献   

10.
So far, it is poorly understood how differential responses of avian seed dispersers and fruit predators to changes in habitat structure and fruit abundance along land-use gradients may translate into consequences for the seed dispersal of associated plants. We selected a gradient of habitat modification (forest, semi-natural, and rural habitat) characterized by decreasing tree cover and a high variation in local fruit availability. Along this gradient we quantified fruit removal by avian seed dispersers and fruit predators from 18 Sorbus aucuparia trees. We analyzed the relative importance of tree cover and fruit abundance in explaining species richness, abundance and fruit removal rates of both guilds from S. aucuparia trees. Species richness and abundance of seed dispersers decreased with decreasing tree cover, whereas fruit removal by seed dispersers decreased with decreasing fruit abundance independent of tree cover. Both variables had no effect on species richness, abundance and fruit removal by fruit predators. Consequently, seed dispersers dominated relative fruit removal in fruit-rich sites but the dispersal/predation ratio shifted in favor of predation in fruit-poor habitat patches. Our study demonstrates that variation in local habitat structure and fruit abundance can cause guild-specific responses. Such responses may result in a shift in fruit removal regimes and might affect the dispersal ability of dependent fruiting plants. Future studies should aim at possible consequences for plant recruitment and guild-specific responses of frugivores to disturbance gradients on the level of entire plant–frugivore associations.  相似文献   

11.
12.
13.
Research on endozoochorous seed dispersal is needed to further understand plant ecology and evolution. There are several methods for calculating the distribution of seed dispersal distances, although many studies use the “combination of gut retention time and movement data” (CGM) method to determine the potential seed dispersal distance distribution (PSD). However, there have been no evaluations of between PSD values acquired by CGM and seed dispersal distance distributions calculated using other methods. The main purpose of this study was to compare methods of determining seed dispersal distance distributions using raccoon dogs (Nyctereutes procyonoides). We calculated estimated seed dispersal distance distribution (ESD) using the bait-marker method and PSD using the CGM method. There were no differences between the ESD and PSD results with regard to basic dispersal distance distributions. The results indicate that if the region from which animal movement data was acquired and the region from which markers for the bait-marker method have been collected are the same, the distance distributions using the two methods may match. Additionally, though there were differences in seed mimic gut retention times (GRTs) between the two baits used (median GRT, fruits: 8 h 50 min, animal materials: 12 h 55 min), there were no differences in PSD between the two baits. This indicates that disperser movement has a stronger effect on dispersal distance distribution than GRT when using the CGM method.  相似文献   

14.
The interaction between granivorous scatterhoarding mammals and plants is a conditional mutualism: scatterhoarders consume seeds (acting as predators), but the movement of seed by scatterhoarders may contribute to dispersal (acting as mutualists). Understanding the ecological factors that shape this relationship is highly relevant in anthropogenically disturbed tropical forests where large‐bodied frugivores are extirpated. In such forests, large‐seeded trees that once depended on these frugivores for dispersal may now only have scatterhoarders as prospective dispersers. We studied Carapa oreophila (Meliaceae) in an Afromontane forest, to test the hypotheses that the proportion of seeds immediately consumed or hoarded (dispersed) would vary over a disturbance gradient. Temporal replication also afforded exploration of how habitat effects might vary with food availability. Using a Bayesian framework, we demonstrate that seeds were more likely to be hoarded in less disturbed forest, irrespective of temporal variation in food abundance. In contrast, forest disturbance only appeared to increase seed predation in temporal replicates that coincided with sustained food availability. These results highlight the potential variability in the dynamics between plants and scatterhoarders over fine temporal scales, elucidating possible ecological scenarios where scatterhoarders might act as mutualists (contributing positively to plant recruitment). Our study also fills important knowledge gaps about the importance of scatterhoarders as dispersers in tropical forests depleted of large‐bodied frugivores, particularly in Africa where scatterhoarding mutualisms have not been extensively studied.  相似文献   

15.
为了深入了解啮齿动物在不同种子丰富度条件下对不同大小和单宁含量种子的觅食行为策略及其与植物种群更新的关系,在宁夏六盘山区的华北落叶松人工林,研究了不同大小和单宁含量[0%Tannin(T)、2%T、8%T和15%T]的人工种子在模拟结实小年和结实大年对啮齿动物取食和扩散行为的影响.结果表明: 啮齿动物消耗种子速度在结实小年更快,结实大年的种子消耗速度相对缓慢. 种子就地取食率(ISPR)在不同结实年份间无显著差异,扩散后取食率(PRAD)在结实小年显著高于结实大年,但前者的扩散后贮藏率(HRAD)显著低于后者;种子扩散后的取食距离(PDAD)和贮藏距离(HDAD)在结实小年均显著大于结实大年.在结实小年,大种子的PDAD和HDAD均大于小种子,前者在不同大小种子间均差异显著,而后者仅在2%T和15%T的不同大小种子间差异显著;在结实大年,除0%T外的其他单宁含量种子的PDAD和HDAD在不同大小种子间均差异显著.ISPR在中等单宁含量种子最大,高单宁含量种子最小;PRAD分别在结实小年的高单宁含量种子和结实大年的无单宁种子最大;不论在结实大年还是结实小年,HRAD均在高单宁含量种子最大,中等单宁含量种子最小.这说明结实大年可延缓啮齿动物对种子的消耗速率,提高种子的HRAD,但种子扩散距离减小;啮齿动物在结实大年和小年均表现出对大种子的扩散偏好,且大种子被扩散的距离更远;啮齿动物在不同结实年份均偏好于就地取食中等单宁含量种子,而扩散高单宁含量种子.  相似文献   

16.
The role of harvester ants in Mediterranean grassland and scrubland has mostly focused on seed consumption. However, recent studies have reported their role as accidental dispersal agents of some of the collected seeds via refuse piles. The objective of this study is to examine the effect of the ant Messor barbarus on seed availability and dispersal of one of its major diet components, Lavandula stoechas subsp. pedunculata, in scrubland, grassland and the ecotones between them. After confirming and quantifying the Lavandula contribution to M. barbarus diet, we described the spatial and temporal patterns of pre- and post-dispersal seed predation, seed content and seedling occurrence in the refuse piles. Our results show that: (1) Lavandula propagules constitute a high proportion of the prey items collected by M. barbarus, with particularly intense collection activity in mid-summer, spring and autumn, in decreasing order. (2) Pre-dispersal predation rate was significantly higher in the ecotone than in the scrubland (76% and 13.5% of total seed production lost respectively). (3) Season and propagule type (seed vs. fruit) were the most significant variables explaining the post-dispersal predation probability, which approached 100% of seeds after 48 h in mid-summer. (4) Viable Lavandula seeds were found in refuse piles at densities of 0.06–0.2 per g of refuse pile material, or 58.8–207.2 per refuse pile. On the one hand, these results indicate that the ecotones are most affected by M. barbarus pre-dispersal consumption, which may locally limit Lavandula colonisation. On the other hand, the small proportion of consumed seeds that is dispersed to refuse piles may be relevant at the population level, as this dispersal implies arrival at potentially favourable sites for establishment.  相似文献   

17.
Currently many attempts are made to reconstruct the colonization history of plant species after the last ice age. A surprising finding is that during the colonization phase genetic diversity did not decrease as much as expected. In this paper we examine whether long distance seed dispersal events could play a role in the unexpected maintenance of genetic diversity during range expansion. This study is based on simulations carried out with a maternally inherited haploid locus using a cellular automaton. The simulations reveal a close relationship between the frequency of long distance seed dispersal events and the amount of genetic diversity preserved during colonization. In particular, when the colonized region is narrow, a complete loss of genetic diversity results from the occurrence of very rare long distance dispersal (LDD) events. We call this phenomenon the 'embolism effect'. However, slightly higher rates of LDD events reverse this effect, up to the point that diversity is better preserved than in a pure diffusion model. This phenomenon is linked to the reorganization of the genetic structure during colonization and is called the 'reshuffling effect'.  相似文献   

18.
Andresen E  Levey DJ 《Oecologia》2004,139(1):45-54
Seeds dispersed by tropical, arboreal mammals are usually deposited singly and without dung or in clumps of fecal material. After dispersal through defecation by mammals, most seeds are secondarily dispersed by dung beetles or consumed by rodents. These post-dispersal, plant-animal interactions are likely to interact themselves, as seeds buried by dung beetles are less likely to be found by rodents than unburied seeds. In a series of three experiments with seeds of 15 species in central Amazonia (Brazil), we determined (1) how presence and amount of dung associated with seeds influences long-term seed fate and seedling establishment, (2) how deeply dung beetles bury seeds and how burial depth affects seedling establishment, and (3) how seed size affects the interaction between seeds, dung beetles, and rodents. Our overall goal was to understand how post-dispersal plant-animal interactions determine the link between primary seed dispersal and seedling establishment. On average, 43% of seeds surrounded by dung were buried by dung beetles, compared to 0% of seeds not surrounded by dung (n=2,156). Seeds in dung, however, tended to be more prone than bare seeds to predation by rodents. Of seeds in dung, probability of burial was negatively related to seed size and positively related to amount of dung. Burial of seeds decreased the probability of seed predation by rodents three-fold, and increased the probability of seedling establishment two-fold. Mean burial depth was 4 cm (0.5–20 cm) and was not related to seed size, contrary to previous studies. Probability of seedling establishment was negatively correlated with burial depth and not related to seed size at 5 or 10 cm depths. These results illustrate a complex web of interactions among dung beetles, rodents, and dispersed seeds. These interactions affect the probability of seedling establishment and are themselves strongly tied to how seeds are deposited by primary dispersers. More generally, our results emphasize the importance of looking beyond a single type of plant-animal interaction (e.g., seed dispersal or seed predation) to incorporate potential effects of interacting interactions.  相似文献   

19.
20.
Quantifying the effect of pollen dispersal and flowering traits on mating success is essential for understanding evolutionary responses to changing environments and establishing strategies for forest tree breeding. This study examined, quantitatively, the effects of male fecundity, interindividual distance and anisotropic pollen dispersal on the mating success of Scots pine (Pinus sylvestris), utilizing a well-mapped Scots pine seed orchard. Paternity analysis of 1021 seeds sampled from 87 trees representing 28 clones showed that 53% of the seeds had at least one potential pollen parent within the orchard. Pronounced variation in paternal contribution was observed among clones. Variations in pollen production explained up to 78% of the variation in mating success, which was 11.2 times greater for clones producing the largest amount of pollen than for clones producing the least pollen. Mating success also varied with intertree distance and direction, which explained up to 28% of the variance. Fertilization between neighboring trees 2.3 m apart was 2.4 times more frequent than between trees 4.6 m apart, and up to 12.4 times higher for trees downwind of the presumed prevailing wind direction than for upwind trees. The effective number of pollen donors recorded in the seed orchard (12.2) was smaller than the theoretical expectation (19.7). Based on the empirical observations, a mating model that best describes the gene dispersal pattern in clonal seed orchards was constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号