首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uterine gland development or adenogenesis in the neonatal ovine uterus involves budding and tubulogenesis followed by coiling and branching morphogenesis of the glandular epithelium (GE) from the luminal epithelium (LE) between birth (Postnatal Day [PND] 0) and PND 56. Activins, which are members of the transforming growth factor beta superfamily, and follistatin, an inhibitor of activins, regulate epithelial branching morphogenesis in other organs. The objective of the present study was to determine effects of postnatal age on expression of follistatin, inhibin alpha subunit, betaA subunit, betaB subunit, activin receptor (ActR) type IA, ActRIB, and ActRII in the developing ovine uterus. Ewes were ovariohysterectomized on PND 0, 7, 14, 21, 28, 35, 42, 49, or 56. The uterus was analyzed by in situ hybridization and immunohistochemistry. Neither inhibin alpha subunit mRNA or protein was detected in the neonatal uterus. Expression of betaA and betaB subunits was detected predominantly in the endometrial LE and GE and myometrium between PND 0 and PND 56. In all uterine cell types, ActRIA, ActRIB, and ActRII were expressed, with the highest levels observed in the endometrial LE and GE and myometrium. Between PND 0 and PND 14, follistatin was detected in all uterine cell types. However, between PND 21 and PND 56, follistatin was only detected in the stroma and myometrium and not in the developing GE. Collectively, the present results indicate that components of the activin-follistatin system are expressed in the developing neonatal ovine uterus and are potential regulators of endometrial gland morphogenesis.  相似文献   

2.
Postnatal development of the ovine uterus between birth and Postnatal Day (PND) 56 involves differentiation of the endometrial glandular epithelium from the luminal epithelium followed by tubulogenesis and branching morphogenesis. These critical events coincide with expression of estrogen receptor alpha (ERalpha) by nascent endometrial glands and stroma. To test the working hypothesis that estrogen and uterine ERalpha regulate uterine growth and endometrial gland morphogenesis in the neonatal ewe, ewes were treated daily from birth (PND 0) to PND 55 with 1) saline and corn oil as a vehicle control (CX), 2) estradiol-17 beta (E2) valerate (EV), an ERalpha agonist, 3) EM-800, an ERalpha antagonist, or 4) CGS 20267, a nonsteroidal aromatase inhibitor. On PND 14, ewes were hemihysterectomized, and the ipsilateral oviduct and ovary were removed. The remaining uterine horn, oviduct, and ovary were removed on PND 56. Treatment with CGS 20267 decreased plasma E2 levels, whereas EM-800 had no effect compared with CX ewes. Uterine horn weight and length were not affected by EM-800 or CGS 20267 but were decreased in EV ewes on PND 56. On PND 14 and PND 56, treatment with EV decreased endometrial thickness but increased myometrial thickness. The numbers of ductal gland invaginations and endometrial glands were not affected by CGS but were lower in EM-800 ewes on PND 56. Exposure to EV completely inhibited endometrial gland development and induced luminal epithelial hypertrophy but did not alter uterine cell proliferation. Exposure to EV substantially decreased expression of ERalpha, insulin-like growth factor (IGF) I, and IGF-II in the endometrium. Results indicate that circulating E2 does not regulate endometrial gland differentiation or development. Although ERalpha does not regulate initial differentiation of the endometrial glandular epithelium, results indicate that ERalpha does regulate, in part, coiling and branching morphogenesis of endometrial glands in the neonatal ewe. Ablation of endometrial gland genesis by EV indicates that postnatal uterine development is extremely sensitive to the detrimental effects of inappropriate steroid exposure.  相似文献   

3.
4.
In many species, endometrial gland adenogenesis occurs neonatally in an ovary- and steroid-independent manner. Chronic exposure of the developing neonatal ovine uterus to norgestomet (NOR) from birth permanently ablates endometrial gland morphogenesis or adenogenesis, creating an adult ovine uterine gland knockout (UGKO) phenotype. This study was conducted to determine the mechanism(s) whereby NOR inhibits adenogenesis in the neonatal ewe. Ewe lambs received no implant or a NOR implant at birth and on postnatal day (PND) 14, and they were necropsied on PND28. Histological analyses of the tracts indicated NOR exposure specifically inhibited endometrial adenogenesis, but no histoarchitectural differences were observed in the oviduct, cervix, or vagina. No effect of NOR treatment was detected on proliferating cell nuclear antigen (PCNA) expression in the endometrial luminal epithelium (LE), stroma, or myometrium. In control (CX) ewes, estrogen receptor alpha (ER-alpha) and progesterone receptor (PR) mRNA and protein were expressed strongly in nascent and proliferating glandular epithelium (GE) but were undetected in epithelium of NOR uteri. Expression of c-met and fibroblast growth factor receptor 2IIIb (FGFR2IIIb) mRNA was detected in the LE and GE of CX uteri. In NOR uteri, c-met was expressed in the LE similar to CX uteri, but FGFR2IIIb mRNA levels were lower than in the LE of CX uteri. Uterine hepatocyte growth factor (HGF), the ligand for c-met, and FGFR2IIIb mRNA expression was substantially lower in NOR ewes, but expression of FGF-7 and FGF-10 mRNAs, ligands for FGFR2IIIb, was unaffected. These results indicate that NOR disrupts endometrial adenogenesis by ablating epithelial ER-alpha expression and altering expression of paracrine growth factors and/or receptors involved in epitheliomesenchymal interactions. Likewise, these mechanisms are proposed to be important regulators of normal uterine gland morphogenesis in the neonate.  相似文献   

5.
Wang Y  Ge W 《Biology of reproduction》2004,71(6):2056-2064
Our recent experiments showed that gonadotropin(s) stimulated activin betaA and follistatin expression through the cAMP-PKA pathway but suppressed betaB via a cAMP-dependent but PKA-independent pathway in cultured zebrafish follicle cells. Given that pituitary gonadotropins are the major hormones controlling the development and function of the ovary, the differential expression of activin betaA and betaB as well as follistatin in response to gonadotropin(s) raises an interesting question about the temporal expression patterns of these molecules in vivo during sexual maturation and ovulatory cycle. Three experiments were performed in the present study. In the first experiment using sexually immature zebrafish, we followed the expression of activin betaA, betaB, and follistatin at the whole ovary level during a 10-day period in which the ovary developed from the primary growth stage to the one with nearly full-grown follicles. Activin betaA expression was very low at the primary growth stage but significantly increased with the growth of the ovary, and its rise was accompanied by an increase in follistatin expression. In contrast, the expression of activin betaB could be easily detected in the ovary of all stages; however, it did not exhibit an obvious trend of variation during the development. The second experiment examined the stage-dependent expression of activin betaA, betaB, and follistatin at the follicle level in the adult mature zebrafish. The expression of activin betaA was again low in the follicles during the primary growth stage, but exhibited a phenomenal increase after the follicles entered vitellogenesis with the peak level reached at midvitellogenic stage; in contrast, activin betaB mRNA could be easily detected at all stages with a slight increase during follicle growth. The expression of follistatin, on the other hand, also increased significantly during vitellogenesis; however, its level dropped sharply after reaching the peak at the midvitellogenic stage. In the third experiment, we investigated the dynamic changes of the ovarian activin betaA, betaB, and follistatin expression during the daily ovulatory cycle. The expression of activin betaA and follistatin gradually increased from 1800 h onward and reached the peak level around 0400 h when the germinal vesicles had migrated to the periphery in the full-grown oocytes. In contrast, activin betaB expression steadily declined, although not statistically significant, during the same period, but increased sharply at 0700 h when mature oocytes started to appear in most of the ovaries collected. In conclusion, activin betaA and betaB exhibit distinct expression patterns during the development of the ovary and the daily ovarian cycle of the zebrafish. It seems that activin betaA is involved in promoting ovary and follicle growth, whereas activin betaB may have a tonic role throughout follicle development but becomes critical at the late stage of oocyte maturation and/or ovulation.  相似文献   

6.
7.
Endometrial glands are present in all mammalian uteri and produce secretions that are hypothesized to support conceptus (i.e., embryo/fetus and placental membranes) survival and development. In sheep, endometrial gland morphogenesis occurs postnatally and can be epigenetically ablated by chronic neonatal exposure to a progestin from birth, thereby producing an adult uterine gland knock-out (UGKO) phenotype. This study determined the long-term effects of neonatal progestin exposure on adult ovine reproductive tract structure and function. Neonatal ewes were exposed to norgestomet (Nor) from birth to 32 wk of age. Unexposed ewes served as controls. After puberty, adult Nor-treated (n = 6) and control (n = 6) ewes were repeatedly bred at estrus (Day 0) to intact rams of proven fertility. In contrast to a pregnancy rate of 80% for control ewes, pregnancy was never detected on Day 25 after mating (or thereafter) in bred UGKO ewes. Control and Nor-treated ewes were then bred and necropsied on Day 9. Similar numbers of hatched blastocysts were present in uterine flushings from control and Nor-treated ewes. Weights of the ovaries and cervices were not affected by treatment. No histoarchitectural differences between control and Nor-treated ewes were detected for ovaries, oviducts, cervices, or vaginae. However, uterocervical and uterine weight as well as uterine horn length were less for Nor-treated ewes. The uteri of Nor-treated ewes were devoid of endometrial glands and lacked the stromal delineation characteristic of intercaruncular endometrium in control ewes. Endometrial width, area, and lumenal epithelial length were decreased in uteri from Nor-treated ewes, but myometrial width and morphology were not affected. Expression of a number of mRNAs that are expressed predominantly in the endometrial epithelia was not different between uteri from control and from Nor-treated ewes. Collectively, these results indicate that neonatal exposure of ewes to a progestin from birth appears to only affect development of the uterus and not any extrauterine reproductive tract tissues. The infertility of the UGKO ewes appears to result from a lack of endometrial glands and, by extension, of their secretions that are required to support growth and development of peri-implantation conceptuses.  相似文献   

8.
9.
10.
Endometrial glands secrete molecules hypothesized to support conceptus growth and development. In sheep, endometrial gland morphogenesis occurs postnatally and can be epigenetically ablated by neonatal progestin exposure. The resulting stable adult uterine gland knockout (UGKO) phenotype was used here to test the hypothesis that endometrial glands are required for successful pregnancy. Mature UGKO ewes were bred repeatedly to fertile rams, but no pregnancies were detected by ultrasound on Day 25. Day 7 blastocysts from normal superovulated ewes were then transferred synchronously into Day 7 control or UGKO ewes. Ultrasonography on Days 25-65 postmating indicated that pregnancy was established in control, but not in UGKO ewes. To examine early uterine-embryo interactions, four control and eight UGKO ewes were bred to fertile rams. On Day 14, their uteri were flushed. The uterus of each control ewe contained two filamentous conceptuses of normal length. Uteri from four UGKO ewes contained no conceptus. Uteri of three UGKO ewes contained a single severely growth-retarded tubular conceptus, whereas the remaining ewe contained a single filamentous conceptus. Histological analyses of these uteri revealed that endometrial gland density was directly related to conceptus survival and developmental state. Day 14 UGKO uteri that were devoid of endometrial glands did not support normal conceptus development and contained either no conceptuses or growth-retarded tubular conceptuses. The Day 14 UGKO uterus with moderate gland development contained a filamentous conceptus. Collectively, these results demonstrate that endometrial glands and, by inference, their secretions are required for periimplantation conceptus survival and development.  相似文献   

11.
Endometrial glands are critical for uterine function and develop between birth (Postnatal Day [P] 0) and P56 in the neonatal ewe. Endometrial gland morphogenesis or adenogenesis involves the site-specific budding differentiation of the glandular epithelium from the luminal epithelium followed by their coiling/branching development within the stroma of the intercaruncular areas of the endometrium. To determine whether WNT signaling regulates endometrial adenogenesis, the WNT signaling system was studied in the neonatal ovine uterus. WNT5A, WNT7A, and WNT11 were expressed in the uterine epithelia, whereas WNT2B was in the stroma. The WNT receptors FZD2 and FZD6 and coreceptor LRP6 were detected in all uterine cells, and FZD6 was particularly abundant in the endometrial epithelia. Secreted FZD-related protein-2 (SFRP2), a WNT antagonist, was not detected in the P0 uterus, but was abundant in the aglandular caruncular areas of the endometrium between P7 and P56. Exposure of ewes to estrogens during critical developmental periods inhibits or retards endometrial adenogenesis. Estrogen-induced disruption of endometrial adenogenesis was associated with reduction or ablation of WNT2B, WNT7A, and WNT11, and with an increase in WNT2 and SFRP2 mRNA, depending on exposure period. Collectively, results implicate the canonical and noncanonical WNT pathways in regulation of postnatal ovine uterine development and endometrial adenogenesis. Expression of SFRP2 in aglandular caruncular areas may inhibit the WNT signaling pathway, thereby concentrating WNT signaling and restricting endometrial adenogenesis in the intercaruncular areas of the uterus. Further, estrogen-induced inhibition of adenogenesis may be mediated by a reduction in WNT signaling caused by aberrant induction of SFRP2 and loss of several critical WNTs.  相似文献   

12.
The success of postnatal uterine morphogenesis dictates, in part, the embryotrophic potential and functional capacity of the adult uterus. The definitive role of Wnt7a in postnatal uterine development and adult function requires a conditional knockout, because global deletion disrupts müllerian duct patterning, specification, and cell fate in the fetus. The Wnt7a-null uterus appears to be posteriorized because of developmental defects in the embryo, as evidenced by the stratified luminal epithelium that is normally found in the vagina and the presence of short and uncoiled oviducts. To understand the biological role of WNT7A after birth and allow tissue-selective deletion of Wnt7a, we generated loxP-flanked exon 2 mice and conditionally deleted Wnt7a after birth in the uterus by crossing them with Pgr(Cre) mice. Morphological examination revealed no obvious differences in the vagina, cervix, oviduct, or ovary. The uteri of Wnt7a mutant mice contained no endometrial glands, whereas all other uterine cell types appeared to be normal. Postnatal differentiation of endometrial glands was observed in control mice, but not in mutant mice, between Postnatal Days 3 and 12. Expression of morphoregulatory genes, particularly Foxa2, Hoxa10, Hoxa11, Msx1, and Wnt16, was disrupted in the Wnt7a mutant uteri. Conditional Wnt7a mutant mice were not fertile. Although embryos were present in uteri of mutant mice on Day 3.5 of pregnancy, blastocyst implantation was not observed on Day 5.5. Furthermore, expression of several genes (Foxa2, Lif, Msx1, and Wnt16) was reduced or absent in adult Wnt7a-deleted uteri on Day 3.5 postmating. These results indicate that WNT7A plays a critical role in postnatal uterine gland morphogenesis and function, which are important for blastocyst implantation and fertility in the adult uterus.  相似文献   

13.
14.
Postnatal ovarian and uterine development is crucial to accomplished female fertility. Thus, the investigations of factors that present in pre-pubertal stages are important as it might be responsible for the regulation of ovarian and uterine function. Apelin, an adipokine and its receptor (APJ) are present in female reproductive organs. However, no study has reported its postnatal expression in uterus and ovary. Thus, we investigated the postnatal developmental changes in expression and localization of apelin and APJ in the ovary and uterus of mice. Postnatal ovary and uterus were collected from postnatal day (PND) 1, 7, 14, 21, 42, 65 and performed western blot analysis and immunohistochemistry. Uterine APJ is elevated in PND14 and PND65, whereas, ovarian APJ elevated in PND7, PND14, and PND65. Apelin expression in both ovary and uterus showed intense staining at PND65 and PND14. Our results showed that apelin and APJ abundance was lower at PND21 in uterus and ovary. In conclusion, apelin and APJ are developmentally regulated in the ovary and uterus, and its localization in the different compartments of ovary and uterus suggest its distribution specific physiological role in the uterus and ovary.  相似文献   

15.
Ovine endometrial gland development is a postnatal event that can be inhibited epigenetically by chronic exposure of ewe lambs to a synthetic progestin from birth to puberty. As adults, these neonatally progestin-treated ewes lack endometrial glands and display a uterine gland knockout (UGKO) phenotype that is useful as a model for study of endometrial function. Here, objectives were to determine: 1) length of progestin exposure necessary from birth to produce the UGKO phenotype in ewes; 2) if UGKO ewes display normal estrous cycles; and 3) if UGKO ewes could establish and/or maintain pregnancy. Ewe lambs (n = 22) received a Norgestomet (Nor) implant at birth and every two weeks thereafter for 8 (Group I), 16 (Group II), or 32 (Groups III and IV) weeks. Control ewe lambs (n = 13) received no Nor treatment (Groups V and VI). Ewes in Groups I, II, III, and VI were hemihysterectomized (Hhx) at 16 weeks of age. After puberty, the remaining uterine horn in Hhx ewes was removed on either Day 9 or 15 of the estrous cycle (Day 0 = estrus). Histological analyses of uteri indicated that progestin exposure for 8, 16, or 32 weeks prevented endometrial adenogenesis and produced the UGKO phenotype in adult ewes. Three endometrial phenotypes were consistently observed in Nor-treated ewes: 1) no glands, 2) slight glandular invaginations into the stroma, and 3) limited numbers of cyst- or gland-like structures in the stroma. Overall patterns of uterine progesterone, estrogen, and oxytocin receptor expression were not different in uteri from adult cyclic control and UGKO ewes. However, receptor expression was variegated in the ruffled luminal epithelium of uteri from UGKO ewes. Intact UGKO ewes displayed altered estrous cycles with interestrous intervals of 17 to 43 days, and they responded to exogenous prostaglandin F(2 approximately ) (PGF) with luteolysis and behavioral estrus. During the estrous cycle, plasma concentrations of progesterone in intact control and UGKO ewes were not different during metestrus and diestrus, but levels did not decline in many UGKO ewes during late diestrus. Peak peripheral plasma concentrations of PGF metabolite, in response to an oxytocin challenge on Day 15, were threefold lower in UGKO compared to control ewes. Intact UGKO ewes bred repeatedly to intact rams did not display evidence of pregnancy based on results of ultrasound. Collectively, results indicate that 1) transient, progestin-induced disruption of ovine uterine development from birth alters both structural and functional integrity of the adult endometrium; 2) normal adult endometrial integrity, including uterine glands, is required to insure a luteolytic pattern of PGF production; and 3) the UGKO phenotype, characterized by the absence of endometrial glands and a compact, disorganized endometrial stroma, limits or inhibits the capacity of uterine tissues to support the establishment and/or maintenance of pregnancy.  相似文献   

16.
The formation of the essential functional unit of the ovary, the primordial follicle, occurs during fetal life in humans. Factors regulating oogonial proliferation and interaction with somatic cells before primordial follicle formation are largely unknown. We have investigated the expression, localisation and functional effects of activin and its receptors in the human fetal ovary at 14-21 weeks gestation. Expression of mRNA for the activin betaA and betaB subunits and the activin receptors ActRIIA and ActRIIB was demonstrated by RT-PCR. Expression of betaA mRNA increased 2-fold across the gestational range examined. Activin subunits and receptors were localised by immunohistochemistry. The betaA subunit was expressed by oogonia, and the betaB subunit and activin receptors were expressed by both oogonia and somatic cells. BetaA expression was increased in larger oogonia at later gestations, but was low in oocytes within newly formed primordial follicles. Treatment of ovary fragments with activin A in vitro increased both the number of oogonia present and oogonial proliferation, as detected by bromodeoxyuridine (BrdU) incorporation. These data indicate that activin may be involved in the autocrine and paracrine regulation of germ cell proliferation in the human ovary during the crucial period of development leading up to primordial follicle formation.  相似文献   

17.
Expression of the gene for prostaglandin synthase (PGS) was examined in whole endometrial tissue derived from ewes during the oestrous cycle (Days 4-14), on Day 15 of pregnancy and following ovariectomy and treatment with ovarian steroid hormones. Whilst no significant differences were seen in PGS mRNA concentrations analysed by Northern blot analysis in endometrial tissue during the oestrous cycle or in early pregnancy, treatment of ovariectomized (OVX) ewes with oestradiol-17 beta markedly reduced endometrial PGS mRNA concentration. There was no difference in PGS mRNA concentration in ewes treated with progesterone, either alone or in conjunction with oestrogen, from that in OVX controls. In contrast, differences in immunolocalization of PGS observed in uterine tissue from OVX-steroid-treated ewes were much more marked and reflected similar changes seen previously in the immunocytochemical distribution of endometrial PGS during the oestrous cycle. In OVX ewes and those treated with oestrogen, immunocytochemical staining for PGS was seen in stromal cells, but little immunoreactive PGS was located in the endometrial epithelial cells. However, in ewes treated with progesterone alone or with oestrogen plus progesterone, PGS was found in luminal and glandular epithelial cells and in stromal cells. Intensity of immunostaining for PGS in endothelial cells and myometrium did not differ between the treatments. Thus, whilst oestrogen lowers PGS mRNA in the endometrium, presumably in stroma, it may also increase the stability of the enzyme itself in the stromal cells. Although oestradiol-17 beta has no effect on PGS in endometrial epithelium, progesterone stimulates the production of PGS in endometrial epithelial cells without altering the overall abundance of PGS mRNA in the endometrium as a whole. Conceptus-induced changes in PGF-2 alpha release by ovine endometrium would not appear to be mediated via effects on PGS gene expression or protein synthesis.  相似文献   

18.
In ewes, the uterine gland knockout (UGKO) phenotype is caused by neonatal exposure to norgestomet to arrest uterine gland development and produce an adult which has a uterus characterized by the lack of endometrial glands. Since endometrial glands in the sheep produce the lymphocyte-inhibitory protein, ovine uterine serpin (OvUS), an experiment was conducted with ewes of the UGKO phenotype to evaluate whether the inhibitory actions of progesterone on tissue rejection responses in utero are dependent upon the presence of endometrial glands. Control and UGKO ewes were ovariectomized and subsequently treated with either 100 mg/day progesterone or corn oil vehicle for 30 days. An autograft and allograft of skin were then placed in each uterine lumen and treatments were continued for an additional 30 days before grafts were examined for survival. All autografts survived and had a healthy appearance after histological analysis. Allografts were generally rejected in ewes treated with vehicle but were present for hormone-treated ewes, regardless of uterine phenotype. Analysis of the histoarchitecture and protein synthetic capacity of the uterus revealed that progesterone induced differentiation of endometrial glands and synthesis and secretion of OvUS in UGKO ewes. The UGKO ewes had reduced density of CD45R+ lymphocytes in the endometrial epithelium and there was a tendency for progesterone to reduce this effect in luminal epithelium. Taken together, results confirm the actions of progesterone to inhibit graft rejection response in utero. Responses of UGKO ewes to progesterone indicate that the hormone can induce de novo development and differentiation of endometrial glands, at least when skin grafts are in the uterus.  相似文献   

19.
Stanniocalcin (STC) is a hormone in fish that regulates calcium levels. Mammals have two orthologs of STC with roles in calcium and phosphate metabolism and perhaps cell differentiation. In the kidney and gut, STC regulates calcium and phosphate homeostasis. In the mouse uterus, Stc1 increases in the mesometrial decidua during implantation. These studies determined the effects of pregnancy and related hormones on STC expression in the ovine uterus. In Days 10-16 cyclic and pregnant ewes, STC1 mRNA was not detected in the uterus. Intriguingly, STC1 mRNA appeared on Day 18 of pregnancy, specifically in the endometrial glands, increased from Day 18 to Day 80, and remained abundant to Day 120 of gestation. STC1 mRNA was not detected in the placenta, whereas STC2 mRNA was detected at low abundance in conceptus trophectoderm and endometrial glands during later pregnancy. Immunoreactive STC1 protein was detected predominantly in the endometrial glands after Day 16 of pregnancy and in areolae that transport uterine gland secretions across the placenta. In ovariectomized ewes, long-term progesterone therapy induced STC1 mRNA. Although interferon tau had no effect on endometrial STC1, intrauterine infusions of ovine placental lactogen (PL) increased endometrial gland STC1 mRNA abundance in progestinized ewes. These studies demonstrate that STC1 is induced by progesterone and increased by a placental hormone (PL) in endometrial glands of the ovine uterus during conceptus (embryo/fetus and extraembryonic membranes) implantation and placentation. Western blot analyses revealed the presence of a 25-kDa STC1 protein in the endometrium, uterine luminal fluid, and allantoic fluid. The data suggest that STC1 secreted by the endometrial glands is transported into the fetal circulation and allantoic fluid, where it is hypothesized to regulate growth and differentiation of the fetus and placenta, by placental areolae.  相似文献   

20.
Gastrin-releasing peptide (GRP) is abundantly expressed by endometrial glands of the ovine uterus and processed into different bioactive peptides, including GRP1-27, GRP18-27, and a C-terminus, that affect cell proliferation and migration. However, little information is available concerning the hormonal regulation of endometrial GRP and expression of GRP receptors in the ovine endometrium and conceptus. These studies determined the effects of pregnancy, progesterone (P4), interferon tau (IFNT), placental lactogen (CSH1), and growth hormone (GH) on expression of GRP in the endometrium and GRP receptors (GRPR, NMBR, BRS3) in the endometrium, conceptus, and placenta. In pregnant ewes, GRP mRNA and protein were first detected predominantly in endometrial glands after Day 10 and were abundant from Days 18 through 120 of gestation. Treatment with IFNT and progesterone but not CSH1 or GH stimulated GRP expression in the endometrial glands. Western blot analyses identified proGRP in uterine luminal fluid and allantoic fluid from Day 80 unilateral pregnant ewes but not in uterine luminal fluid of either cyclic or early pregnant ewes. GRPR mRNA was very low in the Day 18 conceptus and undetectable in the endometrium and placenta; NMBR and BRS3 mRNAs were undetectable in ovine uteroplacental tissues. Collectively, the present studies validate GRP as a novel IFNT-stimulated gene in the glands of the ovine uterus, revealed that IFNT induction of GRP is dependent on P4, and found that exposure of the ovine uterus to P4 for 20 days induces GRP expression in endometrial glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号