首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The affinity of photosynthesis for CO2 is calculated here as the initial slope of net-photosynthetic rate against concentration of CO2. The affinity for CO2 for pairs of freshwater macrophytes with similar leaf morphology but able or unable to use HCO3 as a carbon source was compared.
2. Species restricted to CO2 had a higher affinity for CO2 than species that were also able to use HCO3 when rates were expressed on the basis of area, dry mass and content of chlorophyll a .
3. Published values for the affinity for CO2 and the concentration of CO2 which half-saturated rate of photosynthesis were compiled and compared. Despite a large range of values, affinity for CO2 was greater for species restricted to CO2 than for those also able to use HCO3 and statistically different when the slope was expressed on the basis of dry mass and chlorophyll a content.
4. The difference in affinity is consistent with predicted benefits of a high permeability to CO2 for species relying on passive diffusion of CO2 and a lower permeability for species able to use HCO3 in order to reduce efflux of CO2 from a high internal concentration generated by active transport.
5. The implications of the different affinities are discussed in terms of species distribution.  相似文献   

2.
Influence of soil O2 and CO2 on root respiration for Agave deserti   总被引:5,自引:0,他引:5  
Respiration measured as CO2 efflux was determined at various soil O2 and CO2 concentrations for individual, attached roots of a succulent perennial from the Sonoran Desert, Agave deserti Engelm. The respiration rate increased with increasing O2 concentration up to about 16% O2 for established roots and 5% O2 for rain roots (fine branch roots on established roots induced by wetting of the soil) and then remained fairly constant up to 21% O2. When O2 was decreased from 21 to 0%, the respiration rates were similar to those obtained with increasing O2 concentration. The CO2 concentration in the root zone, which for the shallow-rooted A. deserti in the field was about 1 000 μl l-1, did not affect root respiration at concentrations up to 2 000 μl l-1, but higher concentrations reduced it, respiration being abolished at 20 000 μl l-1 (2%) CO2 for both established and rain roots. Upon lowering CO2 to 1 000 μl l-1 after exposure to concentrations up to 10000 μl l-1 CO2, inhibition of respiration was reversible. Uptake of the vital stain neutral red by root cortical cells was reduced to zero, indicating cell death, in about 4 h at 2% CO2, substantiating the detrimental effects of high soil CO2 concentrations on roots of A. deserti . This CO2 response may explain why roots of desert succulents tend to occur in porous, well-aerated soils.  相似文献   

3.
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2+↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction.  相似文献   

4.
Quantitative estimates of soil C input under ambient (35 Pa) and elevated (60 Pa) CO2-partial pressure (pCO2) were determined in a Free-Air Carbon dioxide Enrichment (FACE) experiment. To facilitate 13C-tracing, Trifolium repens L. was grown in a soil with an initial δ13C distinct by at least 5‰ from the δ13C of T. repens grown under ambient or elevated pCO2. A shift in δ13C of the soil organic C was detected after one growing season. Calculated new soil C inputs in soil under ambient and elevated pCO2 were 2 and 3 t ha–1, respectively. Our findings suggest that under elevated CO2 conditions, soil C sequestration may be altered by changes in plant biomass production and quality.  相似文献   

5.
1. Ten herbaceous species were grown over a 4-month period under ambient (360 μmol mol–1) and elevated (610 μmol mol–1) atmospheric CO2 conditions. Plants were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus mosseae and given a phosphorus (P) supply which was not immediately available to the plants.
2. Multiple harvests were taken in order to determine whether the effect of elevated CO2 on mycorrhizal colonization and phosphorus inflow was independent of its effect on plant growth.
3. All species grew faster under elevated CO2 and carbon partitioning was altered, generally in favour of the shoots. All species responded similarly to elevated CO2.
4. Elevated CO2 did not affect the percentage of root length colonized by AM fungi, but the total amount of colonized root length was increased, because the plants were bigger.
5. Elevated CO2 increased total P content, but had little or no effect on P concentration. At a given age, P inflow was stimulated by elevated CO2, but when root length was taken into account the CO2 effect disappeared.
6. In these host species there is no evidence for a direct effect of elevated CO2 on mycorrhizal functioning, because both internal mycorrhizal colonization and P inflow are unaffected.
7. Future research should concentrate on the potential for carbon flow to the soil via the external mycelial network.  相似文献   

6.
Effects of the current (38 Pa) and an elevated (74 Pa) CO2 partial pressure on root and shoot areas, biomass accumulation and daily net CO2 exchange were determined for Opuntia ficus-indica (L.) Miller, a highly productive Crassulacean acid metabolism species cultivated worldwide. Plants were grown in environmentally controlled rooms for 18 weeks in pots of three soil volumes (2 600, 6 500 and 26 000 cm3), the smallest of which was intended to restrict root growth. For plants in the medium-sized soil volume, basal cladodes tended to be thicker and areas of main and lateral roots tended to be greater as the CO2 level was doubled. Daughter cladodes tended to be initiated sooner at the current compared with the elevated CO2 level but total areas were similar by 10 weeks. At 10 weeks, daily net CO2 uptake for the three soil volumes averaged 24% higher for plants growing under elevated compared with current CO2 levels, but at 18 weeks only 3% enhancement in uptake occurred. Dry weight gain was enhanced 24% by elevated CO2 during the first 10 weeks but only 8% over 18 weeks. Increasing the soil volume 10-fold led to a greater stimulation of daily net CO2 uptake and biomass production than did doubling the CO2 level. At 18 weeks, root biomass doubled and shoot biomass nearly doubled as the soil volume was increased 10-fold; the effects of soil volume tended to be greater for elevated CO2. The amount of cladode nitrogen per unit dry weight decreased as the CO2 level was raised and increased as soil volume increased, the latter suggesting that the effects of soil volume could be due to nitrogen limitations.  相似文献   

7.
The oxygen requirement for stomatal opening in maize plants ( Zea mays L. hybrid INRA 508) was studied at different CO2 concentrations and light intensities. In the absence of CO2, stomatal opening always required O2, but this requirement decreased with increasing light intensity. In darkness, the lowest O2 partial pressure needed to obtain a weak stomatal movement was about 50 Pa. This value was lowered to ca 10 Pa in light (320 μmol m−2 s−1).
On the other hand. in the absence of O2, CO2enabled stomatal opening to occur in the light, presumably due to the evolved photosynthetic O2. Thus, CO2, which generally reduced stomatal aperture, could induce stomatal movement in anoxia and light. The effect of CO2 on stomatal opening was closely dependent on O2 concentration and light intensity. Stomatal aperture appeared CO2-independent at an O2 partial pressure which was dependent on light intensity and was about 25 Pa at 320 umol m−2 s−1.
The presence of a plasmalemma oxidase, in addition to mitochondrial oxidase, might explain the differences in the O2 requirement at various light intensities. The possible involvement of such a system in relation to the effect of CO2 is discussed.  相似文献   

8.
Ecosystem CO2 and N2O exchanges between soils and the atmosphere play an important role in climate warming and global carbon and nitrogen cycling; however, it is still not clear whether the fluxes of these two greenhouse gases are correlated at the ecosystem scale. We collected 143 pairs of ecosystem CO2 and N2O exchanges between soils and the atmosphere measured simultaneously in eight ecosystems around the world and developed relationships between soil CO2 and N2O fluxes. Significant linear regressions of soil CO2 and N2O fluxes were found for all eight ecosystems; the highest slope occurred in rice paddies and the lowest in temperate grasslands. We also found the dominant role of growing season on the relationship of annual CO2 and N2O fluxes. No significant relationship between soil CO2 and N2O fluxes was found across all eight ecosystem types. The estimated annual global N2O emission based on our findings is 13.31 Tg N yr−1 with a range of 8.19–18.43 Tg N yr−1 for 1980–2000, of which cropland contributes nearly 30%. Our findings demonstrated that stoichiometric relationships may work on ecological functions at the ecosystem level. The relationship of soil N2O and CO2 fluxes developed here could be helpful in biogeochemical modeling and large-scale estimations of soil CO2 and N2O fluxes.  相似文献   

9.
1.  Applying Keeling plot techniques to derive δ13C of respiratory input in a closed non-equilibrated chamber can lead to large errors because steady-state diffusion rules are violated in a non-steady-state environment. To avoid these errors, respiratory δ13C can be derived using equilibrated closed chambers.
2.  We introduce a new method to obtain stem respired CO2δ13C (δst - r) with closed equilibrated stem chambers (E-SC). We present a theoretical model describing the equilibration process, test the model against field data and find excellent agreement. The method is further tested by comparing it with closed non-equilibrated stem chambers (NE-SC); we found no difference between these methods.
3.  Our theoretical model to describe CO2 diffusion from the respiratory pool into the chamber and the equation to derive the δ13C of the efflux are general. They could be applied to other ecosystem components (e.g. soils).
4.  Our method is easy to implement, cost effective, minimizes sources of error and allows for rigorous leak detection. One major limitation is its inability to detect rapid change; the equilibration process requires 15 ± 2 h. A second limitation is that it cannot be used for species that produce abundant pitch at sites of stem wounding (e.g. Pseudotsuga menziesii ).
5.  Investigating δ13C of CO2 respired by different ecosystem components is necessary to interpret δ13C of ecosystem respiration. This parameter has major implications with respect to global carbon cycle science.  相似文献   

10.
1 In a glasshouse experiment we studied the effect of raised CO2 concentration (720 p.p.m.) on CH4 emission at natural boreal peat temperatures using intact cores of boreal peat with living vascular plants and Sphagnum mosses. After the end of the growing season half of the cores were kept unnaturally warm (17–20 °C). The potential for CH4 production and oxidation was measured at the end of the emission experiment.
2 The vascular cores ('Sedge') consisted of a moss layer with sedges, and the moss cores (' Sphagnum ') of Sphagnum mosses (some sedge seedlings were removed by cutting). Methane efflux was 6–12 times higher from the Sedge cores than from the Sphagnum cores. The release of CH 4 from Sedge cores increased with increasing temperature of the peat and decreased with decreasing temperature. Methane efflux from Sphagnum cores was quite stable independent of the peat temperatures.
3 In both Sedge and Sphagnum samples, CO2 treatment doubled the potential CH4 production but had no effect on the potential CH4 oxidation. A raised concentration of CO2 increased CH4 efflux weakly and only at the highest peat temperatures (17–20 °C).
4 The results suggest that in cool regions, such as boreal wetlands, temperature would restrict decomposition of the extra substrates probably derived from enhanced primary production of mire vegetation under raised CO2 concentrations, and would thus retard any consequent increase in CH4 emission.  相似文献   

11.
In situ responses to elevated CO2 in tropical forest understorey plants   总被引:3,自引:1,他引:2  
1. Plants growing in deep shade and high temperature, such as in the understorey of humid tropical forests, have been predicted to be particularly sensitive to rising atmospheric CO2. We tested this hypothesis in five species whose microhabitat quantum flux density (QFD) was documented as a covariable. After 7 (tree seedlings of Tachigalia versicolor and Beilschmiedia pendula ) and 18 months (shrubs Piper cordulatum and Psychotria limonensis, and grass Pharus latifolius ) of elevated CO2 treatment ( c. 700 μl litre–1) under mean QFD of less than 11 μmol m–2 s–1, all species produced more biomass (25–76%) under elevated CO2.
2. Total plant biomass tended to increase with microhabitat QFD (daytime means varying from 5 to 11μmol m–2 s–1) but the relative stimulation by elevated CO2 was higher at low QFD except in Pharus .
3. Non-structural carbohydrate concentrations in leaves increased significantly in Pharus (+ 27%) and Tachigalia (+ 40%).
4. The data support the hypothesis that tropical plants growing near the photosynthetic light compensation point are responsive to elevated CO2. An improved plant carbon balance in deep shade is likely to influence understorey plant recruitment and competition as atmospheric CO2 continues to rise.  相似文献   

12.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   

13.
1. Root competition can be an important determinant of the performance of neighbours within plant populations and communities. Because plants often maintain larger root systems and allocate more of their carbon to root systems under elevated atmospheric CO2 than they do at lower CO2 concentrations, root–root interactions could play an increasingly important role in determining competitive outcomes among individuals and plant species as global CO2 concentration continues to rise.
2. We established 12 pure stands of Linum usitatissimum (flax) and 12 mixed stands of Linum and its naturally co-occurring weed species Silene cretica in opaque plastic trays each filled with the same amount of nutrient-rich soil mix. In half of the trays from each of these stand types, vertical waterproof partitions separated the root systems of individual plants from each other to prevent root competition, while in the other half no partitions were present. Half of the trays from all treatments were allowed to grow under low atmospheric CO2 concentration (320μll–1) and the other half under elevated CO2 (600μll–1), in daylight growth chambers for 30 days from seedling emergence until harvest in mid-June. All trays received equal amounts of water so that soils in the low CO2 treatment were maintained at field capacity.
3. Our results indicate that under high soil fertilities: (1) intra-specific root–root interactions alone play a relatively insignificant role in determining plant biomass production within pure Linum populations and (2) the impact of an aggressive species ( Silene ) on co-occurring less aggressive species ( Linum ) becomes more severe under elevated CO2 as a result of amplified interspecific root competition.  相似文献   

14.
1. Increasing carbon dioxide concentration (E: 680 μl CO2 litre–1 vs ambient, A: 355 μl CO2 litre–1) around late-successional Alpine sedge communities of the Swiss Central Alps (2450 m) for four growing seasons (1992–1995) had no detectable effect on symbiotic N2 fixation in Trifolium alpinum —the sole N2-fixing plant species in these communities (74 ± 30 mg N m–2 year–1, A and E plots pooled).
2. This result is based on data collected in the fourth growing season showing that elevated CO2 had no effect on Trifolium above-ground biomass (4·4 ± 1·7 g m–2, A and E plots pooled, n = 24) or N content per unit land area (124 ± 51 mg N m–2, A and E pooled), or on the percentage of N Trifolium derived from the atmosphere through symbiotic N2 fixation (%Ndfa: 61·0 ± 4·1 across A and E plots) estimated using the 15N dilution method.
3. Thus, it appears that N inputs to this ecosystem via symbiotic N2 fixation will not be dramatically affected in the foreseeable future even as atmospheric CO2 continues to rise.  相似文献   

15.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

16.
1. We tested the hypothesis that the net partitioning of dry mass and dry mass:area relationships is unaltered when plants are grown at elevated atmospheric CO2 concentrations.
2. The total dry mass of Dactylis glomerata, Bellis perennis and Trifolium repens was higher for plants in 700 compared to 350 μmol CO2 mol–1 when grown hydroponically in controlled-environment cabinets.
3. Shoot:root ratios were higher and leaf area ratios and specific leaf areas lower in all species grown at elevated CO2. Leaf mass ratio was higher in plants of B. perennis and D. glomerata grown at elevated CO2.
4. Whilst these data suggest that CO2 alters the net partitioning of dry mass and dry mass:leaf area relationships, allometric comparisons of the components of dry mass and leaf area suggest at most a small effect of CO2. CO2 changed only two of a total of 12 allometric coefficients we calculated for the three species: ν relating shoot to root dry mass was higher in D. glomerata , whilst ν relating leaf area to total dry mass was lower in T. repens .
5. CO2 alone has very little effect on partitioning when the size of the plant is taken into account.  相似文献   

17.
The stomatal response to CO2 is linked to changes in guard cell zeaxanthin*   总被引:4,自引:2,他引:2  
The mechanisms mediating CO2 sensing and light–CO2 interactions in guard cells are unknown. In growth chamber-grown Vicia faba leaves kept under constant light (500 μ mol m–2 s–1) and temperature, guard cell zeaxanthin content tracked ambient [CO2] and stomatal apertures. Increases in [CO2] from 400 to 1200 cm3 m–3 decreased zeaxanthin content from 180 to 80 mmol mol–1 Chl and decreased stomatal apertures by 7·0 μ m. Changes in zeaxanthin and aperture were reversed when [CO2] was lowered. Guard cell zeaxanthin content was linearly correlated with stomatal apertures. In the dark, the CO2-induced changes in stomatal aperture were much smaller, and guard cell zeaxanthin content did not change with chamber [CO2]. Guard cell zeaxanthin also tracked [CO2] and stomatal aperture in illuminated stomata from epidermal peels. Dithiothreitol (DTT), an inhibitor of zeaxanthin formation, eliminated CO2-induced zeaxanthin changes in guard cells from illuminated epidermal peels and reduced the stomatal CO2 response to the level observed in the dark. These data suggest that CO2-dependent changes in the zeaxanthin content of guard cells could modulate CO2-dependent changes of stomatal apertures in the light while a zeaxanthin-independent CO2 sensing mechanism would modulate the CO2 response in the dark.  相似文献   

18.
Abstract: In the present study, we used the eddy covariance method to measure CO2 exchange between the atmosphere and an alpine shrubland meadow ecosystem (37°36'N, 101°18'E; 3 250 m a.s.l.) on the Qinghai-Tibetan Plateau, China, during the growing season in 2003, from 20 April to 30 September. This meadow is dominated by formations of Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. During the study period, the meadow was not grazed. The maximum rates of CO2 uptake and release derived from the diurnal course of CO2 flux were -9.38 and 5.02 μmol·m-2·s-1, respectively. The largest daily CO2 uptake was 1.7 g C·m-2·d-1 on 14 July, which is less than half that of an alpine Kobresia meadow ecosystem at similar latitudes. Daily CO2 uptake during the measurement period indicated that the alpine shrubland meadow ecosystem may behave as a sink of atmospheric CO2 during the growing season. The daytime CO2 uptake was correlated exponentially or linearly with the daily photo synthetic photon flux density each month. The daytime average water use efficiency of the ecosystem was 6.47 mg CO2/g H2O. The efficiency of the ecosystem increased with a decrease in vapor pressure deficit.
(Managing editor: Ya-Qin HAN)  相似文献   

19.
Plant responses to elevated CO2 can be modified by many environmental factors, but very little attention has been paid to the interaction between CO2 and changes in vapour pressure deficit (VPD). Thirty-day-old alfalfa plants ( Medicago sativa L. cv. Aragón), which were inoculated with Sinorhizobium meliloti 102F78 strain, were grown for 1 month in controlled environment chambers at 25/15°C, 14 h photoperiod, and 600 µmol m−2 s−1 photosynthetic photon flux (PPF), using a factorial combination of CO2 concentration (400 µmol mol−1 or 700 µmol mol−1) and vapour pressure deficit (0.48 kPa or 1.74 kPa, which corresponded to relative humidities of 85% and 45% at 25°C, respectively). Elevated CO2 strongly stimulated plant growth under high VPD conditions, but this beneficial effect was not observed under low VPD. Under low VPD, elevated CO2 also did not enhance plant photosynthesis, and plant water stress was greatest for plants grown at elevated CO2 and low VPD. Moreover, plants grown under elevated CO2 and low VPD had a lower leaf soluble protein and photosynthetic activity (photosynthetic rate and carboxylation efficiency) than plants grown under elevated CO2 and high VPD. Elevated CO2 significantly increased leaf adaxial and abaxial temperatures. Because the effects of elevated CO2 were dependent on vapour pressure deficit, VPD needs to be controlled in experiments studying the effect of elevated CO2 as well as considered in the extrapolations of results to a warmer, high-CO2 world.  相似文献   

20.
Abstract. A controlled-environment chamber constructed from a standard chest freezer was used to grow and measure the CO2 exchange of small stands of lettuce ( Lactuca sativa L. ev. Ambassador). The chamber, with horizontal air flow, provided good control of air temperature ( c. 6 to 16°C), irradiance (0–300 μmol PAR m 2S1 and CO2 (350–1000 μmol mol−1). The photosynthetic response to changes in these variables was measured using an inexpensive CO2 dosing system which recorded the input rate required to maintain a constant concentration of CO2 (to ± 2.5%). Characteristis of the growth environment and the changes in response to temperature and irradiance are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号