首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is a methodological study exploring the use of quantitative histopathology applied to the cervix to discriminate between normal and cancerous (consisting of adenocarcinoma and adenocarcinoma in situ) tissue samples. The goal is classifying tissue samples, which are populations of cells, from measurements on the cells. Our method uses one particular feature, the IODs-Index, to create a tissue level feature. The specific goal of this study is to find a threshold for the IODs-Index that is used to create the tissue level feature. The main statistical tool is Receiver Operating Characteristic (ROC) curve analysis. When applied to the data, our method achieved promising results with good estimated sensitivity and specificity for our data set. The optimal threshold for the IODs-Index was found to be 2.12.  相似文献   

2.
During secondary bone healing, different tissue types are formed within the fracture callus depending on the local mechanical and biological environment. Our aim was to understand the temporal succession of these tissue patterns for a normal bone healing progression by means of a basic mechanobiological model. The experimental data stemmed from an extensive, previously published animal experiment on sheep with a 3?mm tibial osteotomy. Using recent experimental data, the development of the hard callus was modelled as a porous material with increasing stiffness and decreasing porosity. A basic phenomenological model was employed with a small number of simulation parameters, which allowed comprehensive parameter studies. The model distinguished between the formation of new bone via endochondral and intramembranous ossification. To evaluate the outcome of the computer simulations, the tissue images of the simulations were compared with experimentally derived tissue images for a normal healing progression in sheep. Parameter studies of the threshold values for the regulation of tissue formation were performed, and the source of the biological stimulation (comprising e.g. stem cells) was varied. It was found that the formation of the hard callus could be reproduced in silico for a wide range of threshold values. However, the bridging of the fracture gap by cartilage on the periosteal side was observed only (i) for a rather specific choice of the threshold values for tissue differentiation and (ii) when assuming a strong source of biological stimulation at the periosteum.  相似文献   

3.
Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision.  相似文献   

4.
PurposeA number of guidelines for ultrasound quality assurance recommend the use of the in air reverberation depth as a proxy measure for sensitivity. The test is quantised, i.e. it depends on the brightness of the deepest in air reverberation. The aim of this study was to investigate a possible enhancement to the test, where the gain is reduced to determine the “reverberation threshold”.MethodsThe test was introduced in several ultrasound departments. Results were audited to determine agreement with annual tests of sensitivity using a tissue mimicking test object.ResultsThe new test was performed on 100 probes. A change in reverberation threshold was demonstrated in 9 probes; 8 of these also had changes in penetration and/or grey level in a tissue mimicking test object. Reduced penetration but no change in reverberation threshold was seen in 2 probes.ConclusionsThe reverberation threshold provides a simple enhancement to the in air sensitivity test. Periodic sensitivity testing with a tissue mimicking test object remains important.  相似文献   

5.
This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model’s behavior.  相似文献   

6.
High-intensity focused ultrasound (HIFU) surgery offers a truly non-invasive treatment method with no skin incision, but precise targeting of tumour tissues for thermotherapy. Clinical experience reveals that the efficacy of tumour destruction not only involves in coagulating necrosis, but also involves in damaging the tumour vessels, which play an important role in tumour progression. These vessels take the elevated temperature away by perfusion, resulting in uncertainty of the occlusion effect during HIFU treatment. In this study, a Y-shaped vessel model comprising common and tumour vessels and an indirect fabrication method are proposed. The physical properties of the fabricated vessel phantom are measured and compared with human tissue. Simulation is performed using finite element modelling according to the tissue parameter, perfusion rate of the tumour vessel and treatment parameters including power intensity and exposure duration. The phantom experiments are carried out with perfusion of egg white to validate the threshold time prediction obtained from the simulation results. Our findings reveal that the threshold time obtained from experiments is consistent with the simulated one.  相似文献   

7.
Deep pressure sores (DPS) are associated with inadequate soft tissue perfusion and excessive tissue deformation over critical time durations, as well as with ischemia-reperfusion cycles and deficiency of the lymphatic system. Muscle tissue shows the lowest tolerance to pressure injuries, compared with more superficial tissues. In this communication, we present new histopathology data for muscle tissue of albino (Sprague-Dawley) rats exposed to pressures for 15 or 30 min. These data are superimposed with an extensive literature review of all previous histopathology reported for albino rat skeletal muscles subjected to pressure. The pooled data enabled a new mathematical characterization of the pressure-time threshold for cell death in striated muscle of rats, in the form of a sigmoid pressure-time relation, which extends the previous pressure-time relation to the shorter exposure periods. We found that for pressure exposures shorter than 1 h, the magnitude of pressure is the important factor for causing cell death and the exposure time has little or no effect: even relatively short exposures (15 min - 1 h) to pressures greater than 32 kPa (240 mmHg) cause cell death in rat muscle tissue. For exposures of 2 h or over, again the magnitude of pressure is the important factor for causing cell death: pressures greater than 9 kPa (67 mmHg) applied for over 2 h consistently cause muscle cell death. For the intermediate exposures (between 1 and 2 h), the magnitude of cell-death-causing pressure strongly depends on the time of exposure, i.e., critical pressure levels drop from 32 to 9 kPa. The present sigmoidal pressure-time cell death threshold is useful for design of studies in albino rat models of DPS, and may also be helpful in numerical simulations of DPS development, where there is often a need to extrapolate from tissue pressures to biological damage.  相似文献   

8.
BACKGROUND: In lymphatic organs, the quantitative analysis of the spatial distribution of leukocytes by tissue cytometry would give relevant information about alterations during diseases (leukemia, HIV, AIDS) and their therapeutic regimen, as well as in experimental settings. METHODS: We have developed a semiautomated analysis method for laser scanning cytometry (LSC) termed "multiple thresholding," which is suitable for archived or fresh biopsy material of human lymph nodes and tonsils. Sections are stained with PI for nuclear DNA and up to four antigens using direct or indirect immunofluorescence staining. Measurement is triggered on DNA-fluorescence (argon laser, Ar) or on specific cell labeling. Due to the heterogeneity of cell density, measurements are performed repeatedly at different threshold levels (low threshold: regions of low cellular density, germinal center; high threshold: dense regions, mantle zone). Data are acquired by single- (Ar) or dual-laser excitation (Ar-HeNe) in order to analyze single- (FITC) up to four-color (FITC/PE/PECy5/APC) stained specimen. RESULTS: Percentage and cellular density of cell-subsets is quantified in different microanatomical regions of the specimen. These data were highly correlated with manual scoring of identical specimens (r(2) = 0.96, P < 0.0001). With LSC, semiautomated operator-independent immunophenotyping in tissue sections of lymphatic organs with up to three antibodies simultaneously is possible. CONCLUSIONS: We expect this tissue cytometric approach to yield new insight into processes during diseases and help to quantify the success of therapeutic interventions.  相似文献   

9.
Mitochondrial cytopathies present a tissue specificity characterized by the fact that even if a mitochondrial DNA mutation is present in all tissues, only some will be affected and induce a pathology. Several mechanisms have been proposed to explain this phenomenon such as the appearance of a sporadic mutation in a given stem cell during embryogenesis or mitotic segregation, giving different degrees of heteroplasmy in tissues. However, these mechanisms cannot be the only ones involved in tissue specificity. In this paper, we propose an additional mechanism contributing to tissue specificity. It is based on the metabolic expression of the defect in oxidative phosphorylation (OXPHOS) complexes that can present a biochemical threshold. The value of this threshold for a given OXPHOS complex can vary according to the tissue; thus different tissues will display different sensitivities to a defect in an OXPHOS complex. To verify this hypothesis and to illustrate the pathological consequences of the variation in biochemical thresholds, we studied their values for seven OXPHOS complexes in mitochondria isolated from five different rat tissues. Two types of behavior in the threshold curves can be distinguished corresponding to two modes of OXPHOS response to a deficiency. We propose a classification of tissues according to their type of OXPHOS response to a complex deficiency and therefore to their threshold values.  相似文献   

10.
Several segmentation methods of lesion uptake in 18F-FDG PET imaging have been proposed in the literature. Their principles are presented along with their clinical results. The main approach proposed in the literature is the thresholding method. The most commonly used is a constant threshold around 40% of the maximum uptake within the lesion. This simple approach is not valid for small (< 4 or 5 mL), poorly contrasted positive tissue (SUV < 2) or lesion in movement. To limit these problems, more complex thresholding algorithms have been proposed to define the optimal threshold value to be applied to segment the lesion. The principle is to adapt the threshold following a fitting model according to one or two characteristic image parameters. Those algorithms based on iterative approaches to find the optimal threshold value are preferred as they take into account patient data. The main drawback is the need of a calibration step depending on the PET device, the acquisition conditions and the algorithm used for image reconstruction. To avoid this problem, some more sophisticated segmentation methods have been proposed in the literature: derivative methods, watershed and pattern recognition algorithms. The delineation of positive tissue on FDG-PET images is a complex problem, always under investigation.  相似文献   

11.
This paper investigates the minimum distance for a human body in the near field of a cellular telephone base station antenna for which there is compliance with the IEEE or ICNIRP threshold values for radio frequency electromagnetic energy absorption in the human body. First, local maximum specific absorption rates (SARs), measured and averaged over volumes equivalent to 1 and to 10 g tissue within the trunk region of a physical, liquid filled shell phantom facing and irradiated by a typical GSM 900 base station antenna, were compared to corresponding calculated SAR values. The calculation used a homogeneous Visible Human body model in front of a simulated base station antenna of the same type. Both real and simulated base station antennas operated at 935 MHz. Antenna-body distances were between 1 and 65 cm. The agreement between measurements and calculations was excellent. This gave confidence in the subsequent calculated SAR values for the heterogeneous Visible Human model, for which each tissue was assigned the currently accepted values for permittivity and conductivity at 935 MHz. Calculated SAR values within the trunk of the body were found to be about double those for the homogeneous case. When the IEEE standard and the ICNIRP guidelines are both to be complied with, the local SAR averaged over 1 g tissue was found to be the determining parameter. Emitted power values from the antenna that produced the maximum SAR value over 1 g specified in the IEEE standard at the base station are less than those needed to reach the ICNIRP threshold specified for the local SAR averaged over 10 g. For the GSM base station antenna investigated here operating at 935 MHz with 40 W emitted power, the model indicates that the human body should not be closer to the antenna than 18 cm for controlled environment exposure, or about 95 cm for uncontrolled environment exposure. These safe distance limits are for SARs averaged over 1 g tissue. The corresponding safety distance limits under the ICNIRP guidelines for SAR taken over 10 g tissue are 5 cm for occupational exposure and about 75 cm for general-public exposure.  相似文献   

12.
A variety of medical procedures is aimed to selectively compromise or destroy vascular function. Such procedures include cancer therapies, treatments of cutaneous vascular disorders, and temporary hemostasis during surgery. Currently, technologies such as lasers, cryosurgery and radio frequency coagulation, produce significant collateral damage due to the thermal nature of these interactions and corresponding heat exchange with surrounding tissues. We describe a non-thermal method of inducing temporary vasoconstriction and permanent thrombosis using short pulse (microseconds) electrical stimulation. The current density required for vasoconstriction increases with decreasing pulse duration approximately as t(-0.25). The threshold of electroporation has a steeper dependence on pulse duration-exceeding t(-0.5). At pulse durations shorter than 5 micros, damage threshold exceeds the vasoconstriction threshold, thus allowing for temporary hemostasis without direct damage to surrounding tissue. With a pulse repetition rate of 0.1 Hz, vasoconstriction is achieved approximately 1 min after the beginning of treatment in both arteries and veins. Thrombosis occurs at higher electric fields, and its threshold increases with vessel diameter. Histology demonstrated a lack of tissue damage during vasoconstriction, but vascular endothelium was damaged during thrombosis. The temperature increase does not exceed 0.1 degrees C during these treatments.  相似文献   

13.
Intraoperative assessment of surgical margins is critical to ensuring residual tumor does not remain in a patient. Previously, we developed a fluorescence structured illumination microscope (SIM) system with a single-shot field of view (FOV) of 2.1×1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 μm). The goal of this study was to test the utility of this technology for the detection of residual disease in a genetically engineered mouse model of sarcoma. Primary soft tissue sarcomas were generated in the hindlimb and after the tumor was surgically removed, the relevant margin was stained with acridine orange (AO), a vital stain that brightly stains cell nuclei and fibrous tissues. The tissues were imaged with the SIM system with the primary goal of visualizing fluorescent features from tumor nuclei. Given the heterogeneity of the background tissue (presence of adipose tissue and muscle), an algorithm known as maximally stable extremal regions (MSER) was optimized and applied to the images to specifically segment nuclear features. A logistic regression model was used to classify a tissue site as positive or negative by calculating area fraction and shape of the segmented features that were present and the resulting receiver operator curve (ROC) was generated by varying the probability threshold. Based on the ROC curves, the model was able to classify tumor and normal tissue with 77% sensitivity and 81% specificity (Youden’s index). For an unbiased measure of the model performance, it was applied to a separate validation dataset that resulted in 73% sensitivity and 80% specificity. When this approach was applied to representative whole margins, for a tumor probability threshold of 50%, only 1.2% of all regions from the negative margin exceeded this threshold, while over 14.8% of all regions from the positive margin exceeded this threshold.  相似文献   

14.
Adrenalectomy in the rat was shown to lower seizure threshold measured with the volatile convulsant hexafluorodiethyl ether. Although the expected hyponatraemia and hyperkalaemia were demonstrated in the adrenalectomized rats, there was no associated alteration in Na-K stimulated Mg-ATPase activity either in the whole rat brain or in a microsomal fraction. These results in brain tissue are contrasted with the marked decrease in this enzyme that occurs in kidney tissue of the rat following adrenalectomy. It was suggested that the activity of the enzyme system responsible for active cation transport responds directly in proportion to the work of active transport required by the individual tissue.  相似文献   

15.
16.
Computed tomography (CT) is widely used in the assessment of bone parameters in live patients and animals as well as bone samples. Quantitative analysis requires the segmentation of the bone from the surrounding tissue, and most segmentation methods rely on some type of thresholding technique. The aim of this communication is to highlight the influence of threshold selection on various bone parameters and recommend appropriate thresholds. Two types of information are of interest in bone analysis from images: geometric parameters and density parameters. We know from imaging theory that blurring is an inherent byproduct of all imaging methods. Depending on the threshold used for segmentation, the object boundary moves in space due to the sloping edge. It is, thus, critical to select the threshold that creates an object boundary that reflects the actual object size. Similarly, due to blurring, the imaged density shows erroneous values at the object boundaries. Such values must not be included for an accurate representation of the object density. Using a pQCT scanner and a bone phantom with known density and geometry, we show that the thresholds for geometry and density are different. The threshold for accurate geometric segmentation was 49% of the difference of the density between the adjacent tissues. The threshold for accurate density assessment was 95% of the maximum density value of the bone. These specific thresholds are valid only for the scanner tested; however, the principle for selecting the thresholds is valid across scanner platforms and scale of imaging.  相似文献   

17.
Thresholds are derived for the invasion of plant populations by parasites. The theory is developed for a generic model that takes into account two features characteristic of plant-parasite interactions: a dual source of inoculum (infection from primary or externally introduced inoculum and secondary infection from contact between susceptible and infected host tissue) and a host response to infection load. Each of the threshold criteria is shown to be the sum of the individual components for primary and secondary infection. This indicates that if parasite invasion is not possible through primary or secondary infection alone, when the two modes of transmission are combined, the parasite may be able to invade. The invasion criteria demonstrate that there is a threshold population of susceptible hosts below which the parasite is unable to invade. If there are nonlinearities in the population dynamics (arising through either the transmission process or the host response), there are also threshold densities for the infected hosts and parasite populations below which invasion does not occur. The implications of the results for the control of plant disease are discussed.  相似文献   

18.
We describe a new light microscopic imaging system and method to perform high through put color image analysis on histological tissue sections. The system features a computer-controlled, random-access liquid crystal tunable filter and high-resolution digital camera on a conventional brightfield microscope. For any combination of stains, the method determines the spectral transmittance of each stain on the slide and selects two or more wavelengths at which the differential absorption between stain and counterstain is greatest and the exposure time is reasonably short. Flatfield corrected digital images at these wavelengths are acquired and divided to produce a gray scale ratio image. The ratio image is calculated such that the stained features of interest are highlighted above a uniform background and the counterstained features are highlighted below background. Image threshold procedures using either visual inspection or a threshold value determined by the image mean intensity and standard deviation are used to segment the stained features of interest for subsequent morphometry. Results are presented for peroxidase-AEC-labeled tumor tissue and trichrome-stained biomaterial implant tissues. In principle, the method should work for any combination of colored stains. (J Histochem Cytochem 47:1307-1313, 1999)  相似文献   

19.
A. V. Akleyev 《Biophysics》2010,55(1):128-141
Reviewed are radiobiological data on the emergence of tissue reactions that may determine the course and outcome of human chronic irradiation. The main mechanisms of the reaction of hemopoietic, immune, reproductive, endocrine, respiratory systems and skin to long-term and fractionated exposure to ionizing radiation are considered. The problem of developing a new approach to threshold dose estimation for chronic exposure effects is discussed.  相似文献   

20.
Permeabilising electric pulses can be advantageously used for DNA electrotransfer in vivo for gene therapy, as well as for drug delivery. In both cases, it is essential to know the electric field distribution in the tissues: the targeted tissue must be submitted to electric field intensities above the reversible permeabilisation threshold (to actually permeabilise it) and below the irreversible permeabilisation threshold (to avoid toxic effects of the electric pulses). A three-dimensional finite element model was built. Needle electrodes of different diameters were modelled by applying appropriate boundary conditions in corresponding grid points of the model. The observations resulting from the numerical calculations, like the electric field distribution dependence on the diameter of the electrodes, were confirmed in appropriate experiments in rabbit liver tissue. The agreement between numerical predictions and experimental observations validated our model. Then it was possible to make the first precise determination of the magnitude of the electric field intensity for reversible (362+/-21 V/cm, mean +/- S.D.) and for irreversible (637+/-43 V/cm) permeabilisation thresholds of rabbit liver tissue in vivo. Therefore the maximum of induced transmembrane potential difference in a single cell of the rabbit liver tissue can be estimated to be 394+/-75 and 694+/-136 mV, respectively, for reversible and irreversible electroporation threshold. These results carry important practical implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号