首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sodium- and chloride-dependent electrogenic gamma-aminobutyric acid (GABA) transporter GAT-1, which transports two sodium ions together with GABA, is essential for synaptic transmission by this neurotransmitter. Although lithium by itself does not support GABA transport, it has been proposed that lithium can replace sodium at one of the binding sites but not at the other. To identify putative lithium selectivity determinants, we have mutated the five GAT-1 residues corresponding to those whose side chains participate in the sodium binding sites Na1 and Na2 of the bacterial leucine-transporting homologue LeuT(Aa). In GAT-1 and in most other neurotransmitter transporter family members, four of these residues are conserved, but aspartate 395 replaces the Na2 residue threonine 354. At varying extracellular sodium, lithium stimulated sodium-dependent transport currents as well as [3H]GABA uptake in wild type GAT-1. The extent of this stimulation was dependent on the GABA concentration. In mutants in which aspartate 395 was replaced by threonine or serine, the stimulation of transport by lithium was abolished. Moreover, these mutants were unable to mediate the lithium leak currents. This phenotype was not observed in mutants at the four other positions, although their transport properties were severely impacted. Thus at saturating GABA, the site corresponding to Na2 behaves as a low affinity sodium binding site where lithium can replace sodium. We propose that GABA participates in the other sodium binding site, just like leucine does in the Na1 site, and that at limiting GABA, this site determines the apparent sodium affinity of GABA transport.  相似文献   

2.
Serotonin transporter (SERT) catalyzes reuptake of the neurotransmitter serotonin (5-HT) and is a target for antidepressant drugs and psychostimulants. It is a member of a large family of neurotransmitter and amino acid transporters. A recent study using site-directed cysteine modification identified a helical region of the transporter with high accessibility to the cytoplasm. Subsequently, the high resolution structure of LeuT, a prokaryotic homologue, showed that the residues corresponding to this helical region are part of the fifth transmembrane domain. The accessibility of these positions is now shown to depend on conformational changes corresponding to interconversion of SERT between two forms that face the extracellular medium and the cytoplasm, respectively. Binding of the extracellular inhibitor cocaine decreased accessibility at these positions, whereas 5-HT, the transported substrate, increased it. The effect of 5-HT required the simultaneous presence of Na+ and Cl-, which are transported into the cell together (symported) with 5-HT. In light of the LeuT structure, these results begin to define the pathway through which 5-HT diffuses between its binding site and the cytoplasm. They also confirm a prediction of the alternating access model for transport, namely, that all symported substrates must bind together before translocation.  相似文献   

3.
Noskov SY 《Proteins》2008,73(4):851-863
The recently published X-ray structure of LeuT, a Na(+)/Cl(-)-dependent neurotransmitter transporter, has provided fresh impetus to efforts directed at understanding the molecular principles governing specific neurotransmitter transport. The combination of the LeuT crystal structure with the results of molecular simulations enables the functional data on specific binding and transport to be related to molecular structure. All-atom FEP and molecular dynamics (MD) simulations of LeuT embedded in an explicit membrane were performed alongside a decomposition analysis to dissect the molecular determinants of the substrate specificity of LeuT. It was found that the ligand must be in a zwitterionic (ZW) form to bind tightly to the transporter. The theoretical results on the absolute binding-free energies for leucine, alanine, and glycine show that alanine can be a potent substrate for LeuT, although leucine is preferred, which is consistent with the recent experimental data (Singh et al., Nature 2007;448:952-956). Furthermore, LeuT displays robust specificity for leucine over glycine. Interestingly, the ability of LeuT to discriminate between substrates relies on the dynamics of residues that form its binding pocket (e.g., F253 and Q250) and the charged side chains (R30-D404) from a second coordination shell. The water-mediated R30-D404 salt bridge is thought to be part of the extracellular (EC) gate of LeuT. The introduction of a polar ligand such as glycine to the water-depleted binding pocket of LeuT gives rise to structural rearrangements of the R30-D404-Q250 hydrogen-bonding network and leads to increased hydration of the binding pocket. Conformational changes associated with the broken hydrogen bond between Q250 and R30 are shown to be important for tight and selective ligand binding to LeuT.  相似文献   

4.
Glycine is an inhibitory neurotransmitter in the spinal cord and brain stem, where it acts on strychnine-sensitive glycine receptors, and is also an excitatory neurotransmitter throughout the brain and spinal cord, where it acts on the N-methyl-d-aspartate family of receptors. There are two Na(+)/Cl(-)-dependent glycine transporters, GLYT1 and GLYT2, which control extracellular glycine concentrations and these transporters show differences in substrate selectivity and blocker sensitivity. A bacterial Na(+)-dependent leucine transporter (LeuT(Aa)) has recently been crystallized and its structure determined. When the amino acid residues within the leucine binding site of LeuT(Aa) are aligned with residues of the two glycine transporters there are a number of identical residues and also some key differences. In this report, we demonstrate that the LeuT(Aa) structure represents a good working model of the Na(+)/Cl(-)-dependent neurotransmitters and that differences in substrate selectivity can be attributed to a single difference of a glycine residue in transmembrane domain 6 of GLYT1 for a serine residue at the corresponding position of GLYT2.  相似文献   

5.
6.
Rudnick G 《Biochemistry》2011,50(35):7462-7475
Ion-coupled solute transporters are responsible for transporting nutrients, ions, and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for diffusion of the substrate to the cytoplasm. From the difference between the model and the crystal structures, a simple "rocking bundle" mechanism was proposed, in which a four-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport.  相似文献   

7.
Twenty-two amino acid residues from transmembrane domain 3 of the creatine transporter were replaced, one at a time, with cysteine. The background for mutagenesis was a C144S mutant retaining approximately 75% of wild-type transport activity but resistant to methanethiosulfonate (MTS) reagents. Each substitution mutant was tested for creatine transport activity and sensitivity to the following MTS reagents: 2-aminoethyl methanethiosulfonate (MTSEA), 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and 2-sulfonatoethyl methanethiosulfonate (MTSES). Two mutants (G134C and Y148C) were inactive, but most mutants showed significant levels of creatine transport. Treatment with MTSEA inhibited the activity of the W154C, Y147C, and I140C mutants. Creatine partially protected I140C from inactivation, and this residue, like Cys-144 in the wild-type CreaT, is predicted to be close to a creatine binding site. MTSEA inactivation of Y147C was dependent on Na+ and Cl- suggesting that solvent accessibility was ion-dependent. Helical wheel and helical net projections indicate that the three MTSEA-sensitive mutants (W154C, Y147C, and I140C) and two inactive mutants (V151C and Y148C) are aligned on a face of an alpha-helix, suggesting that they form part of a substrate pathway. The W154C mutant, located near the external face of the membrane, was accessible to the larger MTS reagents, whereas those implicated in creatine binding were only accessible to the smaller MTSEA. Consideration of our data, together with a study on the serotonin transporter (Chen, J. G., Sachpatzidis, A., and Rudnick, G. (1997) J. Biol. Chem. 272, 28321-28327), suggests that involvement of residues from transmembrane domain 3 is a common feature of the substrate pathway of Na+- and Cl- -dependent neurotransmitter transporters.  相似文献   

8.
The neurotransmitter transporters belonging to the solute carrier 6 (SLC6) family, including the gamma-aminobutyric acid (GAT), norepinephrine (NET), serotonin (SERT) and dopamine (DAT) transporters are extremely important drug targets of great clinical relevance. These Na+, Cl(-)-dependent transporters primarily function following neurotransmission to reset neuronal signaling by transporting neurotransmitter out of the synapse and back into the pre-synaptic neuron. Recent studies have tracked down an elusive binding site for Cl(-) that facilitates neurotransmitter transport using structural differences evident with bacterial family members (e.g., the Aquifex aeolicus leucine transporter LeuT Aa) that lack Cl(-) dependence. Additionally, the crystal structures of antidepressant-bound LeuT Aa reveals a surprising mode of drug interaction that may have relevance for medication development. The study of sequence and structural divergence between LeuT Aa and human SLC6 family transporters can thus inform us as to how and why neurotransmitter transporters evolved a reliance on extracellular Cl(-) to propel the transport cycle; what residue changes and helical rearrangements give rise to recognition of different substrates; and how drugs such as antidepressants, cocaine, and amphetamines halt (or reverse) the transport process.  相似文献   

9.
Huang S  Vandenberg RJ 《Biochemistry》2007,46(34):9685-9692
L-Glutamate is the predominant excitatory neurotransmitter in the brain, and its extracellular concentration is tightly controlled by the excitatory amino acid transporters (EAATs). The transport of 1 glutamate molecule is coupled to the cotransport of 3 Na+ and 1 H+ and the countertransport of 1 K+. In addition to substrate transport, the binding of glutamate and Na+ activates an anion current which is thermodynamically uncoupled from the transport process. We have identified three amino acid residues in EAAT1 (D272 in TM5, K384 and R385 in TM7) that influence the amplitude of the anion channel current relative to the transport current. Transporters containing the mutations R268A, D272A, D272K, K384A, K384D, R385A, and R385D were expressed in Xenopus laevis oocytes and their transport and anion channel functions measured using the two-electrode voltage clamp techniques. The D272, K384, and R385 mutant transporters showed no change in transport properties but have increased levels of anion channel activity compared to wild-type transporters. These results identify additional residues of the EAAT1 transporter that may contribute to the gating mechanism of the anion channel of glutamate transporters and also provide hints as to how substrate binding leads to channel activation.  相似文献   

10.
In the central nervous system, electrogenic sodium- and potassium-coupled glutamate transporters terminate the synaptic actions of this neurotransmitter. In contrast to acidic amino acids, dicarboxylic acids are not recognized by glutamate transporters, but the related bacterial DctA transporters are capable of transporting succinate and other dicarboxylic acids. Transmembrane domain 8 contains several residues that differ between these two types of transporters. One of these, aspartate-444 of the neuronal glutamate transporter EAAC1, is conserved in glutamate transporters, but a serine residue occupies this position in DctA transporters. When aspartate-444 is mutated to serine, cysteine, alanine, or even to glutamate, uptake of D-[(3)H]-aspartate as well as the inwardly rectifying steady-state currents induced by acidic amino acids is impaired. Even though succinate was not capable of inducing any steady-state transport currents, the dicarboxylic acid inhibited the sodium-dependent transient currents by the mutants with a neutral substitution at position 444. In the neutral substitution mutants inhibition of the transients was also observed with acidic amino acids. In the D444E mutant, acidic amino acids were potent inhibitors of the transient currents, whereas the apparent affinity for succinate was lower by at least three orders of magnitude. Even though L-aspartate could bind to D444E with a high apparent affinity, this binding resulted in inhibition rather than stimulation of the uncoupled anion conductance. Thus, a carboxylic acid-containing side chain at position 444 prevents the interaction of glutamate transporters with succinate, and the presence of aspartate itself at this position is crucial for productive substrate binding compatible with substrate translocation.  相似文献   

11.
Gether U  Norregaard L  Loland CJ 《Life sciences》2001,68(19-20):2187-2198
The dopamine transporter is member of a large family of Na+/Cl- dependent neurotransmitter and amino acid transporters. Little is known about the molecular basis for substrate translocation in this class of transporters as well as their tertiary structure remains elusive. In this report, we provide the first crude insight into the structural organization of the human dopamine transporter (hDAT) based on the identification of an endogenous high affinity Zn2+ binding site followed by engineering of an artificial Zn2+ binding site. By binding to the endogenous site, Zn2+ acts as a potent non-competitive inhibitor of dopamine uptake mediated by the hDAT transiently expressed in COS-7 cells. Systematic mutagenesis of potential Zn2+ coordinating residues lead to the identification of three residues on the predicted extracellular face of the transporter, 193His in the second extracellular loop, 375His at the external end of the putative transmembrane segment (TM) 7, and 396Glu at the external end of TM 8, forming three coordinates in the endogenous Zn2+ binding site. The three residues are separate in the primary structure but their common participation in binding the small Zn(II) ion define their spatial proximity in the tertiary structure of the transporter. Finally, an artificial inhibitory Zn2+ binding site was engineered between TM 7 and TM 8. This binding site both verify the proximity between the two domains as wells as it supports an alpha-helical configuration at the top of TM 8 in the hDAT.  相似文献   

12.
Ion-coupled transport of neurotransmitter molecules by neurotransmitter:sodium symporters (NSS) play an important role in the regulation of neuronal signaling. One of the major events in the transport cycle is ion-substrate coupling and formation of the high-affinity occluded state with bound ions and substrate. Molecular mechanisms of ion-substrate coupling and the corresponding ion-substrate stoichiometry in NSS transporters has yet to be understood. The recent determination of a high-resolution structure for a bacterial homolog of Na+/Cl-dependent neurotransmitter transporters, LeuT, offers a unique opportunity to analyze the functional roles of the multi-ion binding sites within the binding pocket. The binding pocket of LeuT contains two metal binding sites. The first ion in site NA1 is directly coupled to the bound substrate (Leu) with the second ion in the neighboring site (NA2) only ∼7 Å away. Extensive, fully atomistic, molecular dynamics, and free energy simulations of LeuT in an explicit lipid bilayer are performed to evaluate substrate-binding affinity as a function of the ion load (single versus double occupancy) and occupancy by specific monovalent cations. It was shown that double ion occupancy of the binding pocket is required to ensure substrate coupling to Na+ and not to Li+ or K+ cations. Furthermore, it was found that presence of the ion in site NA2 is required for structural stability of the binding pocket as well as amplified selectivity for Na+ in the case of double ion occupancy.  相似文献   

13.
The crystallizations of the prokaryotic LeuT and of the eukaryotic DAT and SERT transporters represent important steps forward in the comprehension of the molecular physiology of Neurotransmitter: Sodium Symporters, although the molecular determinants of the coupling mechanism and of ion selectivity still remain to be fully elucidated. The insect NSS homologue KAAT1 exhibits unusual physiological features, such as the ability to use K+ as the driver ion, weak chloride dependence, and the ability of the driver ion to influence the substrate selectivity; these characteristics can help to define the molecular determinants of NSS function. Two non-conserved residues are present in the putative sodium binding sites of KAAT1: Ala 66, corresponding to Gly 20 in the Na2 site of LeuT, and Ser 68, corresponding to Ala 22 in the Na1 site. Thr 67 appears also to be significant since it is not conserved among NSS members, is present as threonine only in KAAT1 and in the paralogue CAATCH1 and, according to LeuT structure, is close to the amino acid binding site. Mutants of these residues were functionally characterized in Xenopus oocytes. The T67Y mutant exhibited uptake activity comparable to that of the wild type, but fully chloride-independent and with enhanced stereoselectivity. Interestingly, although dependent on the presence of sodium, the mutant showed reduced transport-associated currents, indicating uncoupling of the driver ion and amino acid fluxes. Thr 67 therefore appears to be a key component in the coupling mechanism, participating in a network that influences the cotransport of Na+ and the amino acid.  相似文献   

14.
Many biologically active compounds including neurotransmitters, metabolic precursors, and certain drugs are accumulated intracellularly by transporters that are coupled to the transmembrane Na+ gradient. Amino acid neurotransmitter transporters play a key role in the regulation of extracellular amino acid concentrations and termination of neurotransmission in the CNS
  • 1 Abbreviations: CNS, central nervous system; GABA, γ-aminobutyric acid; cDNA, complementary deoxyribonucleic acid; mRNA, messenger ribonucleic acid; NMDA, N-methyl-D-aspartate; PKC, protein kinase C; PMA, phorbol 12-myristate 13-acetate; DAG, diacyl glycerol; R59022, DAG kinase inhibitor; AA, arachidonic acid; ACHC, cis-3-aminocyclohexanecarboxylic acid; GAT-A, ACHC-sensitive GABA transporter; GAT-B, β-alanine-sensitive GABA transporter; GLY-1 and GLYT-1, glycine transporters; PROT-1, proline transporter; BGT-1, betaine transporter.
  • . Transporters for the major amino acid neurotransmitters glutamate, GABA, and glycine are found in both neurons and glial cells. Recent work has resulted in the identification of cDNAs encoding several amino acid neurotransmitter transport proteins, all of which belong to the Na+-and Cl?-dependent transporter gene family. The diversity of this family suggests a degree of transporter heterogeneity that is greater than that indicated by biochemical and pharmacological studies.  相似文献   

    15.
    The gamma-aminobutyric acid (GABA) transporter GAT-1 is a prototype of a large family of neurotransmitter transporters that includes those of dopamine and serotonin. GAT-1 maintains low synaptic concentrations of neurotransmitter by coupling GABA uptake to the fluxes of sodium and chloride. Here we identify a stretch of four amino acid residues predicted to lie in the juxtamembrane region prior to transmembrane domain 1 in the cytoplasmic amino-terminal tail of GAT-1, which is critical for its function. Two residues, arginine 44 and tryptophan 47, are fully conserved within the transporter family, and their deletion abolishes GABA transport in the HeLa cell expression system used. Tryptophan 47 can be replaced only by aromatic residues without loss of activity. Arginine 44 is essential for activity. Only when it is replaced by lysine, low activity levels (around 15% of those of the wild type) are observed. Using a reconstitution assay, we show that mutants in which this residue is replaced by lysine or histidine exhibit sodium- and chloride-dependent GABA exchange similar to the wild type. This indicates that these mutants are selectively impaired in the reorientation of the unloaded transporter, a step in the translocation cycle by which net flux and exchange differ. The high degree of conservation in the consensus sequence RXXW suggests that this region may influence the reorientation step in related transporters as well.  相似文献   

    16.
    Shan J  Javitch JA  Shi L  Weinstein H 《PloS one》2011,6(1):e16350

    Background

    The dopamine transporter (DAT), a member of the neurotransmitter:Na+ symporter (NSS) family, terminates dopaminergic neurotransmission and is a major molecular target for psychostimulants such as cocaine and amphetamine, and for the treatment of attention deficit disorder and depression. The crystal structures of the prokaryotic NSS homolog of DAT, the leucine transporter LeuT, have provided critical structural insights about the occluded and outward-facing conformations visited during the substrate transport, but only limited clues regarding mechanism. To understand the transport mechanism in DAT we have used a homology model based on the LeuT structure in a computational protocol validated previously for LeuT, in which steered molecular dynamics (SMD) simulations guide the substrate along a pathway leading from the extracellular end to the intracellular (cytoplasmic) end.

    Methodology/Principal Findings

    Key findings are (1) a second substrate binding site in the extracellular vestibule, and (2) models of the conformational states identified as occluded, doubly occupied, and inward-facing. The transition between these states involve a spatially ordered sequence of interactions between the two substrate-binding sites, followed by rearrangements in structural elements located between the primary binding site and the cytoplasmic end. These rearrangements are facilitated by identified conserved hinge regions and a reorganization of interaction networks that had been identified as gates.

    Conclusions/Significance

    Computational simulations supported by information available from experiments in DAT and other NSS transporters have produced a detailed mechanistic proposal for the dynamic changes associated with substrate transport in DAT. This allosteric mechanism is triggered by the binding of substrate in the S2 site in the presence of the substrate in the S1 site. Specific structural elements involved in this mechanism, and their roles in the conformational transitions illuminated here describe, a specific substrate-driven allosteric mechanism that is directly amenable to experiment as shown previously for LeuT.  相似文献   

    17.
    Translocation through the extracellular vestibule and binding of leucine in the leucine transporter (LeuT) have been studied with molecular dynamics simulations. More than 0.1 μs of all-atom molecular dynamics simulations have been performed on different combinations of LeuT, bound substrate, and bound structural Na+ ions to describe molecular events involved in substrate binding and in the formation of the occluded state and to investigate the dynamics of this state. Three structural features are found to be directly involved in the initial steps of leucine transport: a Na+ ion directly coordinated to leucine (Na-1), two aromatic residues closing the binding site toward the extracellular vestibule (Tyr-108 and Phe-253), and a salt bridge in the extracellular vestibule (Arg-30 and Asp-404). These features account for observed differences between simulations of LeuT with and without bound substrate and for a possible pathway for leucine binding and thereby formation of the occluded LeuT binding site.  相似文献   

    18.
    To identify potential determinants of substrate selectivity in serotonin (5-HT) transporters (SERT), models of human and Drosophila serotonin transporters (hSERT, dSERT) were built based on the leucine transporter (LeuT(Aa)) structure reported by Yamashita et al. (Nature 2005;437:215-223), PBDID 2A65. Although the overall amino acid identity between SERTs and the LeuT(Aa) is only 17%, it increases to above 50% in the first shell of the putative 5-HT binding site, allowing de novo computational docking of tryptamine derivatives in atomic detail. Comparison of hSERT and dSERT complexed with substrates pinpoints likely structural determinants for substrate binding. Forgoing the use of experimental transport and binding data of tryptamine derivatives for construction of these models enables us to critically assess and validate their predictive power: A single 5-HT binding mode was identified that retains the amine placement observed in the LeuT(Aa) structure, matches site-directed mutagenesis and substituted cysteine accessibility method (SCAM) data, complies with support vector machine derived relations activity relations, and predicts computational binding energies for 5-HT analogs with a significant correlation coefficient (R = 0.72). This binding mode places 5-HT deep in the binding pocket of the SERT with the 5-position near residue hSERT A169/dSERT D164 in transmembrane helix 3, the indole nitrogen next to residue Y176/Y171, and the ethylamine tail under residues F335/F327 and S336/S328 within 4 A of residue D98. Our studies identify a number of potential contacts whose contribution to substrate binding and transport was previously unsuspected.  相似文献   

    19.
    The bacterial leucine transporter LeuT retains significant secondary structure similarities to the human monoamine transporters (MAT) such as the dopamine and serotonin reuptake proteins. The primary method of computational study of the MATs has been through the use of the crystallized LeuT structure. Different conformations of LeuT can give insight into mechanistic details of the MAT family. A conformational sampling performed through accelerated molecular dynamics simulations testing different combinations of the leucine substrate and bound sodium ions revealed seven distinct conformational clusters. Further analysis has been performed to target salt‐bridge residues R30–D404, Y108–F253, and R5–D369 and transmembrane domains on both the seven isolated structures and the total trajectories. In addition, solvent accessibility of LeuT and its substrate binding pockets has been analyzed using a program for calculating channel radii. Occupation of the Na2 site stabilizes the outward conformation and should bind to the open outward conformation before the leucine and Na1 sodium while two possible pathways were found to be available for intracellular transport. Proteins 2014; 82:2289–2302. © 2014 Wiley Periodicals, Inc.  相似文献   

    20.
    LeuT is a bacterial amino acid transporter belonging to a large family of membrane proteins, including the neurotransmitter transporters that are targets for antidepressant drugs. The high-resolution structure of LeuT has provided an important model for understanding structure and function in this family. Two recent papers found that LeuT can bind tricyclic antidepressants, raising the possibility that it may also serve as a model for the pharmacological properties of neurotransmitter transporters.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号