首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The proton nmr spectra of the synthetic valency hybrids, α2+CN)2, (α+CN)2β2 of hemoglobin A and the natural valency hybrids of the mutant hemoglobins Boston, Iwate and Milwaukee have led to the unambiguous assignment of the two proximal histidyl imidazole exchangeable proton signals at 64 and 76 ppm to individual α and β subunits, respectively. New single non-exchangeable proton resonances detected in the extreme downfield region of the spectra of Hbs Boston and Iwate are tentatively assigned to the coordinated tyrosine of the mutated α chains.  相似文献   

2.
Horse heart ferric cytochrome c was investigated by the following three methods: (I) Light absorption spectrophotometry at 23 degrees C and 77 degrees K; (II) Electron paramagnetic resonance (EPR) spectroscopy at 20 degrees K; (III) Precise equilibrium measurements of ferric cytochrome c with azide and imidazole between 14.43 and 30.90 degrees C. I and II have demonstrated that: (1) Ferric cytochrome c azide and imidazole complexes were in the purely low spin state between 20 degrees K and 23 degrees C; (2) The energy for the three t2g orbitals calculated in one hole formalism shows that azide or imidazole bind to the heme iron in a similar manner to met-hemoglobin azide or imidazole complexes, respectively. III has demonstrated that: (1) The change of standard enthalpy and that of standard entropy were -2.3 kcal/mol and -1.6 cal/mol per degree for the azide complex formation, and -1.4 kcal/mol and 2.9 cal/mol per degree for the imidazole complex formation. (2) A linear relationship between the change of entropy and that of enthalpy was observed for the above data for the cyanide complex formation. The complex formation of ferric cytochrome c was discussed based on the results of X-ray crystallographic studies compared with hemoglobin and myoglobin.  相似文献   

3.
Correlations between amide proton temperature coefficients (HN/T) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than –4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between –4 and –1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in -helices are on average 1 ppb/K more negative than in -sheets. In consequence, a number of amide protons in -helices involved in hydrogen bonds shorter than 2 Å show HN/T < –4.6 ppb/K. Due to longer hydrogen bonds, 90% of amides in 310 helices and 98% in -turns have temperature coefficients more positive than –4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than –2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures.  相似文献   

4.
In Escherichia coli cytochrome c maturation requires a set of eight proteins including the heme chaperone CcmE, which binds heme transiently, yet covalently. Several variants of CcmE were purified and analyzed by continuous-wave electron paramagnetic resonance, electron nuclear double resonance, and hyperfine sublevel correlation spectroscopy to investigate the heme axial coordination. Results reveal the presence of a number of coordination environments, two high-spin heme centers with different rhombicities, and at least one low-spin heme center. The low-spin species was shown to be an artifact induced by the presence of available histidines in the vicinity of the iron. Both of the high-spin forms are five-coordinated, and comparison of the spectra of the wild-type CcmE with those of the mutant CcmE(Y134H) proves that the higher-rhombicity form is coordinated by Tyr134. The low-rhombicity (axial) form does not have a histidine residue or a water molecule as an axial ligand. However, we identified exchangeable protons coupled to the iron ion. We propose that the axial form can be coordinated by a carboxyl group of an acidic residue in the flexible domain of the protein. The two species would represent two different conformations of the flexible alpha-helix domain surrounding the heme. This conformational flexibility confers CcmE special dynamic properties that are certainly important for its function.  相似文献   

5.
Berka V  Tsai AL 《Biochemistry》2000,39(31):9373-9383
Endothelial nitric oxide synthase (eNOS) is a self-sufficient P450-like enzyme. A P450 reductase domain is tethered to an oxygenase domain containing the heme, the substrate (L-arginine) binding site, and a cofactor, tetrahydrobiopterin (BH(4)). This "triad", located at the distal heme pocket, is the center of oxygen activation and enzyme catalysis. To probe the relationships among these three components, we examined the binding kinetics of three different small heme ligands in the presence and absence of either L-arginine, BH(4), or both. Imidazole binding was strictly competitive with L-arginine, indicating a domain overlap. BH(4) had no obvious effect on imidazole binding but slightly increased the k(on) for L-arginine. L-Arginine decreased the k(on) and k(off) for cyanide by two orders, indicating a "kinetic obstruction" mechanism. BH(4) slightly enhanced cyanide binding. Nitric oxide (NO) binding kinetics were more complex. Increasing the L-arginine concentration decreased the NO binding affinity at equilibrium. In both BH(4)-abundant and BH(4)-deficient eNOS, half of the NO binding sites showed a sizable decrease of the binding rate by L-arginine, with the rate of NO binding at the other half of the sites remaining essentially unaltered by L-arginine, implying that the two heme centers in the eNOS dimer are functionally distinct.  相似文献   

6.
The proton signals for the coordinated axial imidazoles in a series of low-spin ferric bis-imidazole complexes with natural porphyrin derivatives have been located and assigned. The methyl signals of several methyl-substituted imidazoles have also been resolved for the mixed ligand complexes of imidazole and cyanide ion. The imidazole spectra for the bis complexes are essentially the same as those reported earlier for synthetic porphyrins, with the hyperfine shifts exhibiting comparable contributions from the dipolar and contract interactions. The contact contribution reflects spin transfer into a vacant imidazole π orbital. The spectra of both the mono- and bis-imidazole complex concur in predicting that only the 2-H and 5CH2 signals of an axial histidine are likely to resonate clearly outside the diamagnetic 0 to ?10 ppm from TMS region in hemoproteins. However, both the 2-H and 4-H imidazole peaks are found to be too broad to detect in a hemoprotein. Hence, it is suggested that the pair of non-heme, single proton resonances in low-spin met-myoglobin cyanides arise from the non-equivalent methylene protons at the 5-position of the histidyl imidazole. Both the resonance positions and relative linewidths in the model compounds are consistent with the data for this pair of protons in myoglobins. The possible interpretations of the average downfield bias of these signals as well as the magnitude of their spacing, are discussed in terms of the conformation of the proximal histidine relative to the heme group.  相似文献   

7.
S Adachi  I Morishima 《Biochemistry》1992,31(36):8613-8618
The mechanism of N-tetrazole ring formation at the distal histidyl imidazole of sperm whale myoglobin (Mb) has been studied by nitrogen-15 (15N) NMR spectroscopy by utilizing 15N-labeled cyanogen bromide (BrCN) and azide ion (N3-). The 15N-NMR spectrum of BrC15N-modified Mb + N3- afforded two hyperfine-shifted 15N resonances, both of which are identical with the resonance positions of two of the three 15N resonances for BrCN-modified Mb + 15NN2-. This unusual spectral feature is due to the formation of the N-tetrazole ring attached to the distal histidyl imidazole and the scrambling of the labeled nitrogen originated from N3- or BrCN over the tetrazole ring upon coordination to the ferric heme iron. The ferric iron-bound N-tetrazole ring comes off upon reduction to the ferrous state, and the stable CO complex of tetrazole-modified Mb (tetrazole-Mb) is formed. Electronic absorption and 1H-NMR spectra of deoxy and carbonmonoxy forms of tetrazole-Mb are slightly altered from those of native Mb by the modification, while the most significant effect is exerted on the C-O stretching frequency of iron-bound CO. The C-O stretching band for tetrazole-MbCO is observed at 1966 cm-1 in contrast to 1945 cm-1 for native MbCO, suggesting that the geometry of iron-bound CO in tetrazole-Mb is relatively upright which is characteristic of the "open" conformer. This result corresponds to the 15-fold increase of the CO association rate constant by the N-tetrazole modification of the distal His. The oxy form of tetrazole-Mb is readily autoxidized to its ferric state, indicating that hydrogen bonding between the distal His and iron-bound oxygen is essential for stable O2 binding to the heme iron.  相似文献   

8.
Hydrogen bond networks stabilize RNA secondary and tertiary structure and are thus essentially important for protein recognition. During structure refinements using either NMR or X-ray techniques, hydrogen bonds were usually inferred indirectly from the proximity of donor and acceptor functional groups. Recently, quantitative heteronuclear J(N,N)-HNN COSY NMR experiments were introduced that allowed the direct identification of donor and acceptor nitrogen atoms involved in hydrogen bonds. However, protons involved in base pairing interactions in nucleic acids are often not observable due to exchange processes. The application of a modified quantitative J(N,N)-HNN COSY pulse scheme permits observation of 2hJ(N,N) couplings via non-exchangeable protons. This approach allowed the unambiguous identification of the A27·U23 reverse Hoogsteen base pair involved in a U-A·U base triple in the HIV-2 transactivation response element–argininamide complex. Despite a wealth of NOE information, direct evidence for this interaction was lacking due to the rapid exchange of the U23 imino proton. The ability to directly observe hydrogen bonds, even in D2O and in the presence of rapid exchange, should facilitate structural studies of RNA.  相似文献   

9.
The assigned exchangeable proton signals in the proton nuclear magnetic resonance spectra of sperm whale deoxy and Met-cyano myoglobin in H2O solution were found to exhibit pH-dependent saturation transfer from the bulk water, which allowed determination of the kinetics and mechanism of the labile proton exchange with solvent. The exchange rates are base catalyzed for both protein forms, with the rate eight times faster in Met-cyano than in deoxy myoglobin. The exchange rate is taken as a measure of the magnitude of the fluctuation in the protein conformation near the heme cavity. On the basis of tritium exchange methods, the greater stability of the unligated relative to the ligated state in myoglobin has also been reported for hemoglobin. The present study, however, localizes the differential kinetic stability on the F helix whose flexibility has been implicated in the mechanism of cooperativity. The observation that filling the hydrophobic vacancy on the proximal side of the heme near the proximal histidine in Met-cyano myoglobin wih cyclopropane increases the proton lability argues against the role for this hole in facilitating the flexibility of the F helix in the native protein.  相似文献   

10.
The proton signals for the coordinated axial imidazoles in a series of low-spin ferric bis-imidazole complexes with natural porphyrin derivatives have been located and assigned. The methyl signals of several methyl-substituted imidazoles have also been resolved for the mixed ligand complexes of imidazole and cyanide ion. The imidazole spectra for the bis complexes are essentially the same as those reported earlier for synthetic porphyrins, with the hyperfine shifts exhibiting comparable contributions from the dipolar and contact interactions. The contact contribution reflects spin transfer into a vacant imidazole pi orbital. The spectra of both the mono- and bis-imidazole complex concur in predicting that only the 2-H and 5-CH2 signals of an axial histidine are likely to resonate clearly outside the diamagnetic 0 to --10 ppm from TMS region in hemoproteins. However, both the 2-H and 4-H imidazole peaks are found to be too broad to detect in a hemoprotein. Hence, it is suggested that the pair of non-heme, single-proton resonances in low-spin met-myoglobin cyanides arise from the non-equivalent methylene protons at the 5-position of the histidyl imidazole. Both the resonance positions and relative linewidths in the model compounds are consistent with the data for this pair of protons in myoglobins. The possible interpretations of the average downfield bias of these signals as well as the magnitude of their spacing, are discussed in terms of the conformation of the proximal histidine relative to the heme group.  相似文献   

11.
Enzymes involved in the mammalian microsomal metabolism of drugs are, in numerous cases, inhibited by compounds bearing an imidazolyl scaffold. However, the inhibition potency is highly dependent upon the accessibility of the imidazolyl nitrogen lone pair. In order to highlight some structural parameters of inhibitors that control this phenomenon, a series of compounds containing a nitrogen unsubstituted imidazolyl moiety with varying degrees of nitrogen lone pair accessibility was tested on human and rat hepatic cytochromes P450 and microperoxidase 8, an enzymatically active peptide derived from cytochrome c. In each case, we have shown that the accessibility of the imidazole lone pair determined the extent of inhibition. Nitrogen accessibility was tuned not only by varying the steric hindrance in the vicinity of the imidazolyl ring but also by modifying its surrounding hydrogen bonding network. Compounds in which there exists intramolecular hydrogen bonding between the imidazole moiety and an H-bond acceptor, such as an appropriately positioned amide carbonyl group, demonstrated enhanced inhibitory effects. Conversely, imidazole moieties which are in proximity to H-bond donors, such as an amide NH group, displayed reduced potency. This trend was observed in cyclo-peptide derivatives in which the intramolecular H-bond network was adjusted through the modification of the stereochemistry of a dehydrohistidine residue. It was observed that (Z)-isomers weakly bind heme, whereas (E)-isomers demonstrated higher degrees of metal binding. Therefore, enzymatic inhibition of heme-containing proteins by compounds bearing a dehydrohistidine motif seems to be closely related to its stereochemistry and hydrogen binding propensity. At neutral pH, these differences in binding affinities can be confidently attributed to the ambident H-bond properties of imidazole nitrogen atoms. This structure-activity relationship may be of use for the design of novel imidazolyl compounds as new P450 inhibitors or drug candidates.  相似文献   

12.
The interaction of external water molecules with hydrated pyrrole-2-carboxaldehyde PCL/(H2O) n complexes was investigated. The work was supported by both theoretical [DFT/TD-DFT methods using 6-311G++(d,p) basis set in the ground (S0) and excited (S1, S2, S3)states] and experimental [UV-Vis, FTIR and Raman] verification. The focus of the present work was on the weak intermolecular O–H?O, N–H?O–H hydrogen bonded interaction (IerHB) between PCL and external water molecules, and the influence of increasing the number of water molecules to form hydrated PCL/(H2O)n complexes. Effects were observed on different vibrational normal modes and on electronic transition levels. A hydrogen-bonded network of water induces a shift to higher energy in certain normal modes of PCL to form stable PCL/(H2O)n complexes by lowering the barrier energy. Potential energy distribution (PED) analysis indicates a significant charge transfer from PCL to water by creating a water bridge. Hydrogen bonding effects account for the substantial red shift and broadness in νNH, νCO vibrational modes. Water rearrangement turns out to be the main driving force for hydrated complex formation.
Graphical abstract Stability of PCL/(H2O)4 hydarted complex.
  相似文献   

13.
The heme methyl and vinyl alpha-proton signals have been assigned in low-spin ferric cyanide and azide ligated derivatives of the intact tetramer of hemoglobin A, as well as the isolated chains, by reconstituting the proteins with selectively deuterated hemins. For the hemoglobin cyanide tetramer, assignment to individual subunits was effected by forming hybrid hemoglobins possessing isotope-labeled hemins in only one type of subunit. The heme methyl contact shift pattern has 1-methyl and 5-methyl shifts furthest downfield in both chains and the individual subunits of the intact hemoglobin in both the cyanide- and azide-ligated species, which is consistent with a dominant rhombic perturbation due to the proximal His-F8 imidazole pi bonding in the known structure for human adult hemoglobin. The individual chain and subunit assignments confirm that the detailed electronic/magnetic properties of the heme pocket are essentially unaltered upon assembling the R-state tetramer from the isolated subunits.  相似文献   

14.
The heme methyl and vinyl α-proton signals have been assigned in low-spin ferric cyanide and azide ligated derivatives of the intact tetramer of hemoglobin A, as well as the isolated chains, by reconstituting the proteins with selectively deuterated hemins. For the hemoglobin cyanide tetramer, assignment to individual subunits was effected by forming hybrid hemoglobins possessing isotope-labeled hemins in only one type of subunit. The heme methyl contact shift pattern has 1-methyl and 5-methyl shifts furthest downfield in both chains and the individual subunits of the intact hemoglobin in both the cyanide- and azide-ligated species, which is consistent with a dominant rhombic perturbation due to the proximal His-F8 imidazole π bonding in the known structure for human adult hemoglobin. The individual chain and subunit assignments confirm that the detailed electronic/magnetic properties of the heme pocket are essentially unaltered upon assembling the R-state tetramer from the isolated subunits.  相似文献   

15.
Josefin E. Utas  Dick Sandström 《BBA》2006,1757(12):1592-1596
The X-ray crystal structure of the mono-hydrate of 2,2-bis(imidazol-1-ylmethyl)-4-methylphenol has been determined. Three hydrogen bonds hold water very tightly in the crystal, as determined by deuterium solid-state NMR. The hydrogen bond between the phenolic hydroxyl and water appears to have about the same strength as the direct hydrogen bond to imidazole, suggesting that the structure can be a good model for hydrogen bonds that are mediated by a water molecule in enzymes.  相似文献   

16.
The X-ray crystal structure of the mono-hydrate of 2,2-bis(imidazol-1-ylmethyl)-4-methylphenol has been determined. Three hydrogen bonds hold water very tightly in the crystal, as determined by deuterium solid-state NMR. The hydrogen bond between the phenolic hydroxyl and water appears to have about the same strength as the direct hydrogen bond to imidazole, suggesting that the structure can be a good model for hydrogen bonds that are mediated by a water molecule in enzymes.  相似文献   

17.
The proton NMR spectra of a series of low-spin bis-cyano ferric complexes of tetraarylporphyrins and octaethylporphyrin in a variety of solvents have been recorded and analyzed. The hyperfine shifts are shown to be very sensitive to the solvent, experiencing an overall downfield bias as the solvent hydroge-bonding donor strength increased. The characteristic pattern of the contact and dipolar shifts for the meso-aryl group in tetraarylporphyrin complexes are shown to permit a quantitative separation of the dipolar and contact contributions to the hyperfine shift. The separated components indicate that increased solvent hydrogen bonding strength significantly decreases the magnetic anisotropy of the iron and diminishes porphyrin → iron π bonding. The changes in anisotropy with solvent are shown to be consistent with the coordinated cyanide acting as a proton acceptor. Although similar effects are found to be absent in bis-imidazole complexes, a downfield bias of half the magnitude of the bis-cyano complexes is observed in mixed cyano/imidazole complexes. Hence, the heme hyperfine shifts in cyano-metmyoglobins and -hemoglobins may serve as probes for the protonation of the distal histidyl imidazole.  相似文献   

18.
The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.  相似文献   

19.
Proton nuclear magnetic resonance spectroscopy at 250 MHz has been used to investigate the conformations of proximal histidyl residues of human normal adult hemoglobin, hemoglobin Kempsey [beta 99(G1) Asp leads to Asn], hemoglobin Osler [beta 145(HC2) Tyr leads to Asp], and hemoglobin McKees Rocks [beta 145(HC2) Tyr leads to Term] around neutral pH in H2O at 27 degrees C, all in the deoxy form. Two resonances that occur between 58 and 76 ppm downfield from the water proton signal have been assigned to the hyperfine shifted proximal histidyl NH-exchangeable protons of the alpha- and beta-chains of deoxyhemoglobin. These two resonances are sensitive to the quaternary state of hemoglobin, amino acid substitutions in the alpha 1 beta 2-subunit interface and in the carboxy-terminal region of the beta-chain, and the addition of organic phosphates. The experimental results show that there are differences in the heme pockets among these four hemoglobins studied. The structural and dynamic information derived from the hyperfine shifted proximal histidyl NH-exchangeable proton resonances complement that obtained from the ferrous hyperfine shifted and exchangeable proton resonances of deoxyhemoglobin over the spectral region from 5 to 20 ppm downfield from H2O. The relationship between these findings and Perutz's stereochemical mechanism for the cooperative oxygenation of hemoglobin is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号