首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This investigation aimed to assess whether the mitochondrial ATP-sensitive potassium channel blocker 5-hydroxydecanoate (5-HD) could abolish the protection conferred by fasting and ischemic preconditioning (IPC) and to ascertain whether these effects are associated with glycogen breakdown and glycolytic activity. Langendorff perfused hearts of fed and 24-h fasted rats were exposed to 25 min ischemia plus 30 min reperfusion. IPC was achieved by a 3 min ischemia plus a 5 min reperfusion cycle. 5-HD (100 microM) perfusion begun 5 min before IPC or 13 min before sustained ischemia in the non preconditioned groups. Fasting improved the reperfusion recovery of contraction, decreased the contracture and the lactate production, increased glycogenolysis and did not affect the percentage of viable tissue. 5-HD abolished the effects of fasting on the contractile recovery but did not affect the contracture. 5-HD decreased the lactate production in the fed group, increased the preischemic glycogen content in both nutritional groups and did not affect the ischemic glycogen fall. IPC improved the contractile function but prevented the contracture only in the fed group, reduced lactate accumulation and glycogenolysis and evoked an increase of the viable tissue. 5-HD abolished the effects of IPC on the contractile recovery and did not affect its effect on the contracture, lactate production, glycogenolysis and viable tissue. These data suggest that the mitocondrial ATP-sensitive potassium channel is involved in the effects of fasting and IPC on the contractile function but the other cardioprotective and metabolic effects appear evoked through other mechanisms. Also suggest that besides the inhibition of the mitochondrial potassium channel, other mechanisms mediate the effects of 5-HD.  相似文献   

2.
The effects of fasting and ischemic preconditioning (IP) on heart function of Langendorff-perfused rat hearts exposed to 25 min global ischemia plus 30 min reperfusion (RP), were correlated with lactate release and tissue-levels of long-chain acyl carnitine (LCCa) and CoA (LCCoA). IP was achieved by a 3 min ischemia plus a 5 min reperfusion cycle. Creatine kinase leakage was measured to assess the extent of cardiac injury. Fasting reduced the ischemic-induced contracture, improved RP recovery of mechanical function, reduced lactate release and increased the end-ischemia LCCoA and LCCa levels. Both in the fed and the fasted rat hearts IP delayed the pacemaker depression, reduced the amplitude of ischemic contracture and improved the RP recovery of contraction. However, IP reduced creatine kinase and lactate release only in the fed rat hearts. IP had no effects on tissue LCCa and LCCoA in both groups. These data suggest that: 1) beneficial effects of fasting may be ascribed, at least in part, to a reduced lactate production which may attenuate ischemic myocyte acidification and to the accumulation of fatty acyl esters which would favour citric acid cycle replenishment during RP. 2) beneficial effects of IP could be in part explained by the reduction of lactate production in the fed group although data obtained with the fasted rat heart indicate that another mechanisms must also be involved in the effects of IP. 3) accumulation of LCCoA and LCCa is not involved in the noxious effects of ischemia as well as in the protection effected by IP.  相似文献   

3.
To assess whether glycolysis, Na+-H+ exchange and oxidation of fatty acid derived from endogenous lipolysis are involved in the beneficial effects of 24-h fasting on the ischaemic - reperfused heart, it was studied the effects of inhibiting Na+ - H+ exchange using 10 muM dimethylamiloride and fatty acid oxidation using 2 mM oxfenicine, on the functional activity, lactate production and cell viability measured with tetrazolium stain. Since fasting accelerates heart fatty acid oxidation, data were compared to those from fed rats; using Langendorff perfused (glucose 10 mM) hearts of 250-350 g Wistar rats exposed to 25 min ischaemia - 30 min reperfusion. Fasting reduced the ischaemic rise of end diastolic pressure (contracture), improved recovery of contraction and lowered lactate production in comparison with the fed whereas cellular viability was similar in both groups. Dimethylamiloride improved the recovery of contraction (fed control 24 +/- 9%, fed treated 68 +/- 11%, P < 0.05 at the end of reperfusion), attenuated the contracture (fed control 40 +/- 9%, fed treated 24 +/- 11%, P < 0.05 at the beginning of reperfusion) and reduced lactate production in the fed group and increased cellular viability in both groups (fed control 21 +/- 6%, fed treated 69 +/- 7%, P < 0.05, and fasted control 18 +/- 7%, fasted treated 53 +/- 8%, P < 0.05). Oxfenicine reduced the recovery of contraction (fasted control 88 +/- 6%, fasted treated 60 +/- 11%, P < 0.05) and increased lactate production of fasted group and attenuated the contracture in the fed. These data suggest that beneficial effects of fasting owe, at least in part, to a lowered glycolysis probably secondary to the increased fatty acid oxidation and to the accumulation of energy supplying acyl esters. Dimethylamiloride slowing of glycolysis might explain functional improvement, whereas it seems unrelated to the protection on cell viability.  相似文献   

4.
Endogenous glycogen stores are essential to maintain cell functions during myocardial ischemia.. Fasting and L-glutamate improve left ventricular function after an ischemic episode. We studied their effects on myocardial glycogen depletion during ischemia and on left ventricular function and glycogen resynthesis during reperfusion. We allocated 185 Wistar rats to 4 groups: 1) Control, 2) Fasting, 16-20 hours (Fast) 3) L-glutamate supplementation [100 mM] (Glt) or 4) Fasting + L-glutamate supplementation [100 mM]. n = 8-10 in each group. Hearts were mounted in an isolated perfused rat hearts model for 20 min stabilisation, 10/20/30 min ischemia and 60 min reperfusion. At each time point hearts were frozen in liquid nitrogen (-196 degrees C) within 2 seconds and myocardial contents of glycogen, lactate, alanine and glutamate were determined. Left ventricular pressure was measured continuously. Fasting and L-glutamate supplementation improved LV function after ischemia (Fast: p < 0.05, Glt: p < 0.01) and delayed myocardial glycogen depletion (Fast: p < 0.05, Glt: p < 0.01) compared to control. Decreased lactate accumulation and increased alanine content during ischemia were found in fasted (lactate: p < 0.05, alanine: p < 0.05) and L-glutamate supplemented (lactate: p < 0.01, alanine: p < 0.01) hearts compared to control. We did not find any additive effects of fasting and L-glutamate supplementation. In conclusion fasting and L-glutamate supplementation improve left ventricular function during reperfusion and delay myocardial glycogen depletion during ischemia. There were no additive effects of Fasting and L-glutamate supplementation. These finding suggest common metabolic pathways underlying the effects of L-glutamate supplementation and fasting.  相似文献   

5.
The investigation aimed to assess the effects of hypoxic preconditioning in right ventricle strips of fed and 24-h fasted rats, which display a fast fatty acid catabolism, and to ascertain whether these effects are associated with changes in the tissue levels of long-chain acylCoA and acyl carnitine and glycolytic activity. Strips were mounted isometrically in Krebs-bicarbonate solution with 10 mM dextrose and paced at 1 Hz. Strips were exposed to 30 min hypoxia and 60 min reoxygenation with or without a previous preconditioning cycle of 5 min hypoxia followed by a 10 min reoxygenation. During hypoxia the fasted rat strips underwent a greater contracture with respect to the fed group. Preconditioning reduced the contracture strength and accelerated the post-hypoxic recovery only in the fasted rat strips. Hypoxia evoked an increase in the acylCoA and acyl carnitine tissue-contents of the strips which reached higher levels in the fasted than in the fed rat groups. Preconditioning had no effects on the content of these metabolites. During hypoxia lactate output was lower in the fasted than in the fed rat strips and preconditioning abolished this decrease. These data suggest that the protective effects of hypoxic preconditioning occur in the heart tissue predisposed to the oxidation of fatty acid and can not be ascribed to changes in the accumulation of acylCoA and acyl carnitine but could be due, at least in part, to an activation of glycolysis.  相似文献   

6.
Ischemic preconditioning (IPC) protects the heart against subsequent sustained ischemia reperfusion (RP). Despite many triggers and signaling pathways, which seem to be involved in IPC, the IPC-mechanisms remain a controversial issue. One of them is endogenous production of nitric oxide (NO). To assess the role of NO in IPC and its relation with glycogen and glycolysis, the effects of inhibiting NO synthase with L-NAME (50 microM) were examined in IPC rat hearts perfused with medium containing 10 mM glucose. Left ventricular developed pressure-rate product (RPP) and end diastolic pressure (EDP), lactate and glycogen contents, and cell viability were measured. Global ischemia (25 min) was followed by 30 min RP. IPC consisted in one cycle of 3 min ischemia-5 min RP. IPC reduced EDP and improved RP recovery of RPP. L-NAME had no effects on the non-IPC group but abolished these effects of IPC. IPC reduced ischemic decrease of glycogen and the acceleration of glycolysis, and improved cell viability. L-NAME did not affect these effects of IPC. The results suggest that NO is ineffective on the noxious effects of ischemia-RP in non-IPC hearts and on the effects of IPC on cell viability, glycogenolysis and glycolysis whereas it is only involved in functional protection.  相似文献   

7.
We tested the hypothesis that glycogen levels at the beginning of ischemia affect lactate production during ischemia and postischemic contractile function.Isolated working rat hearts were perfused at physiological workload with bicarbonate buffer containing glucose (10 mmol/L). Hearts were subjected to four different preconditioning protocols, and cardiac function was assessed on reperfusion. Ischemic preconditioning was induced by either one cycle of 5 min ischemia followed by 5, 10, or 20 min of reperfusion (PC5/5, PC5/10, PC5/20), or three cycles of 5 min ischemia followed by 5 min of reperfusion (PC3 × 5/5). All hearts were subjected to 15 min total, global ischemia, followed by 30 min of reperfusion. We measured lactate release, timed the return of aortic flow, compared postischemic to preischemic power, and determined tissue metabolites at selected time points.Compared with preischemic function, cardiac power during reperfusion improved in groups PC5/10 and PC5/20, but was not different from control in groups PC5/5 and PC3 × 5/5. There was no correlation between preischemic glycogen levels and recovery of function during reperfusion. There was also no correlation between glycogen breakdown (or resynthesis) and recovery of function. Lactate accumulation during ischemia was lowest in group PC5/20 and highest in the group with three cycles of preconditioning (PC3 × 5/5). Lactate release during reperfusion was significantly higher in the groups with low recovery of power than in the groups with high recovery of power.In glucose-perfused rat heart recovery of function is independent from both pre- and postischemic myocardial glycogen content over a wide range of glycogen levels. The ability to utilize lactate during reperfusion is an indicator for postischemic return of contractile function.  相似文献   

8.
Glycogen turnover and anaplerosis in preconditioned rat hearts   总被引:1,自引:0,他引:1  
Using (13)C NMR, we tested the hypothesis that protection by preconditioning is associated with reduced glycogenolysis during ischemia. Preconditioned rat hearts showed improved postischemic function and reduced ischemic damage relative to ischemic controls after 30 min stop-flow ischemia and 30 min reperfusion (contractility: 30+/-10 vs. 2+/-2%; creatine kinase release: 41+/-4 vs. 83+/-15 U/g; both P<0.05). Preconditioning decreased preischemic [(13)C]glycogen by 24% (a 10% decrease in total glycogen), and delayed ischemic [(13)C]glycogen consumption by 5-10 min, reducing ischemic glycogenolysis without changing acidosis relative to controls. Upon reperfusion, glycogen synthesis resumed only after preconditioning. Glutamate (13)C-isotopomer analysis showed recovery of Krebs cycle activity with higher anaplerosis than before ischemia (23+/-4 vs. 11+/-3%, P<0.05), but in controls reperfusion failed to restore flux. Compared to control, preconditioning before 20 min ischemia increased contractility (86+/-10 vs. 29+/-14%, P<0.05) and restored preischemic anaplerosis (13+/-3 vs. 39+/-9%, P<0.05). Preconditioning is associated with reduced glycogenolysis early during ischemia. However, protection does not rely on major variations in intracellular pH, as proposed earlier. Our isotopomer data suggest that preconditioning accelerates metabolic and functional recovery during reperfusion by more efficient/active replenishment of the depleted Krebs cycle.  相似文献   

9.
Insulin resistance (IR) precedes the onset of Type 2 diabetes, but its impact on preconditioning against myocardial ischemia-reperfusion injury is unexplored. We examined the effects of diazoxide and ischemic preconditioning (IPC; 5-min ischemia and 5-min reperfusion) on ischemia (30 min)-reperfusion (240 min) injury in young IR Zucker obese (ZO) and lean (ZL) rats. ZO hearts developed larger infarcts than ZL hearts (infarct size: 57.3 +/- 3% in ZO vs. 39.2 +/- 3.2% in ZL; P < 0.05) and also failed to respond to cardioprotection by IPC or diazoxide (47.2 +/- 4.3% and 52.5 +/- 5.8%, respectively; P = not significant). In contrast, IPC and diazoxide treatment reduced the infarct size in ZL hearts (12.7 +/- 2% and 16.3 +/- 6.7%, respectively; P < 0.05). The mitochondrial ATP-activated potassium channel (K(ATP)) antagonist 5-hydroxydecanoic acid inhibited IPC and diazoxide-induced preconditioning in ZL hearts, whereas it had no effect on ZO hearts. Diazoxide elicited reduced depolarization of isolated mitochondria from ZO hearts compared with ZL (73 +/- 9% in ZL vs. 39 +/- 9% in ZO; P < 0.05). Diazoxide also failed to enhance superoxide generation in isolated mitochondria from ZO compared with ZL hearts. Electron micrographs of ZO hearts revealed a decreased number of mitochondria accompanied by swelling, disorganized cristae, and vacuolation. Immunoblots of mitochondrial protein showed a modest increase in manganese superoxide dismutase in ZO hearts. Thus obesity accompanied by IR is associated with the inability to precondition against ischemic cardiac injury, which is mediated by enhanced mitochondrial oxidative stress and impaired activation of mitochondrial K(ATP).  相似文献   

10.
The impact of ischemic preconditioning (IPC) on contraction, Ca(2+) homeostasis, and cell survival was compared in isolated ventricular myocytes from young adult ( approximately 3 mo) and aged ( approximately 24 mo) male Fischer-344 rats. Myocytes were field stimulated at 4 Hz (37 degrees C). Contraction (edge detector) and intracellular Ca(2+) (fura-2) were measured simultaneously. Viability was assessed with trypan blue. All cells were exposed to 30 min of simulated ischemia followed by reperfusion. Some cells were preconditioned by exposure to 5 min of simulated ischemia before prolonged ischemia. Pretreatment with IPC abolished postischemic contractile depression, inhibited diastolic contracture, and increased Ca(2+) transient amplitudes in reperfusion in young adult and aged cells. IPC did not affect the modest rise in diastolic Ca(2+) in ischemia in young adult myocytes. However, IPC abolished the marked rise in diastolic Ca(2+) observed in ischemia and early reperfusion in aged myocytes. IPC also suppressed mechanical alternans in ischemia in aged cells, but younger myocytes showed little evidence of mechanical alternans whether or not cells were preconditioned. IPC markedly improved cell viability in reperfusion in young adult but not aged cells. These results suggest that IPC augments the recovery of contractile function in reperfusion by increasing Ca(2+) transient amplitudes in ventricular myocytes from young adult and aged rats. IPC reduced diastolic Ca(2+) accumulation in ischemia in aged myocytes, which may diminish the severity of mechanical alternans in aged cells. Nonetheless, the efficacy of IPC is compromised in aging, as IPC did not improve survival of aged myocytes exposed to ischemia and reperfusion.  相似文献   

11.
Mitochondrial ATP-sensitive K+ channels (mitoKATP) have been proposed to mediate protection against ischemic injury by increasing high-energy intermediate levels. This study was designed to verify if mitochondria are an important factor in the loss of cardiac ATP associated to ischemia, and determine the possible role of mitoKATP in the control of ischemic ATP loss. Langendorff-perfused rat hearts subjected to ischemia were found to have significantly higher ATP contents when pretreated with oligomycin or atractyloside, indicating that mitochondrial ATP hydrolysis contributes toward ischemic ATP depletion. MitoKATP opening induced by diazoxide promoted a similar protection against ATP loss. Diazoxide also inhibited ATP hydrolysis in isolated, nonrespiring mitochondria, an effect accompanied by a drop in the membrane potential and Ca2+ uptake. In hearts subjected to ischemia followed by reperfusion, myocardial injury was prevented by diazoxide, but not atractyloside or oligomycin, which, unlike diazoxide, decreased reperfusion ATP levels. Our results suggest that mitoKATP-mediated protection occurs due to selective inhibition of mitochondrial ATP hydrolysis during ischemia, without affecting ATP synthesis after reperfusion.  相似文献   

12.
We evaluated the possibility that ischemic preconditioning could modify hepatic energy metabolism during ischemia. Accordingly, high-energy nucleotides and their degradation products, glycogen and glycolytic intermediates and regulatory metabolites, were compared between preconditioned and nonpreconditioned livers. Preconditioning preserved to a greater extent ATP, adenine nucleotide pool, and adenylate energy charge; the accumulation of adenine nucleosides and bases was much lower in preconditioned livers, thus reflecting slower adenine nucleotide degradation. These effects were associated with a decrease in glycogen depletion and reduced accumulation of hexose 6-phosphates and lactate. 6-Phosphofructo-2-kinase decreased in both groups, reducing the availability of fructose-2, 6-bisphosphate. Preconditioning sustained metabolite concentration at higher levels although this was not correlated with an increased glycolytic rate, suggesting that adenine nucleotides and cAMP may play the main role in the modulation of glycolytic pathway. Preconditioning attenuated the rise in cAMP and limited the accumulation of hexose 6-phosphates and lactate, probably by reducing glycogen depletion. Our results suggest the induction of metabolic arrest and/or associated metabolic downregulation as energetic cost-saving mechanisms that could be induced by preconditioning.  相似文献   

13.
Based on our observations of energy sparing in heat-acclimated (AC) rat hearts, we investigated whether changes in preischemic glycogen level, glycolytic rate, and plasma thyroxine level mediate cardioprotection induced in these hearts during ischemia-reperfusion insults. Control (C) (24 degrees C), AC (34 degrees C, 30 days), acclimated-euthyroid (34 degrees C + 3 ng/ml l-thyroxine), and control hypothyroid (24 degrees C + 0.02% 6-n-propyl-2-thiouracil) groups were studied. Preischemic glycogen was higher in AC than in C hearts [39.0 +/- 8.5 vs. 19.2 +/- 4.2 (SE) micromol glucose/g wet wt; P < 0.0006], and the lactate produced vs. glycogen level during total ischemia ((13)C-NMR spectroscopy) was markedly slower (AC: -0.82x, r = 0.98 vs. C: -4.7x, r = 0.9). Time to onset of ischemic contracture was lengthened, and the fraction of hearts experiencing ischemic contracture was lowered. Pulse pressure recovery was improved in AC compared with C animals before, but not after, absolute sodium iodoacetate-induced glycolysis inhibition. Acclimated-euthyroid hearts exhibited decreased ischemic tolerance, whereas induced hypothyroidism in C improved cardiotolerance. Thus higher preischemic glycogen and slowed glycolysis are associated with hypothyroidism and are likely important mediators of the improved ischemic tolerance exhibited by AC hearts.  相似文献   

14.
二氮嗪在长时程心脏低温保存中的作用   总被引:7,自引:1,他引:6  
Guo W  Shen YL  Chen YY  Hu ZB  Yan ZK  Xia Q 《生理学报》2004,56(5):632-638
延长心脏的体外有效保存时间对临床心脏移植具有重要意义。本文旨在研究线粒体ATP敏感性钾通道开放剂二氮嗪(diazoxide,DE)在离体大鼠心脏长时程低温保存中的作用。SD大鼠随机分成5组,包括对照组(单纯Celsior保存液),DE组(Celsior液中含15、30或45μmol/L的DE)和DE 5-HD组[Celsior液中含30μmol/L的DE和100μmol/L的5-羟基葵酸盐(5-hydroxydecanoate,5-HD)]。利用Langendorff离体鼠心灌注法,观察心脏在4℃条件下保存10h后,复灌期血流动力学恢复、冠脉流出液中心肌酶漏出量及心肌水含量变化,并做心肌超微结构检查。结果显示:与对照组比较,DE处理后,复灌期的左心室舒张末期压力明显降低,心率、左心室发展压、左心室压力变化率、冠脉流出量等的恢复率在多个复灌时间点上优于对照组,且能显著减少复灌过程中心肌酶(乳酸脱氢酶、磷酸肌酸激酶及谷草转氨酶)的漏出量,降低心肌水含量;其中30和45μmol/LDE组的保护作用优于15μmol/LDE组;电镜结果显示DE对长时程低温保存心脏的超微结构有较好的保护作用。DE的上述作用可被线粒体ATP敏感性钾通道的特异性阻断剂5-HD所取消。以上结果提示:DE可通过激活线粒体ATP敏感性钾通道显著改善离体大鼠心脏长时程低温保存效果。  相似文献   

15.
We studied the effect of 12–36 min of global ischemia followed by 36 min of reperfusion in Langendorff perfused rabbit hearts (n = 26). Metabolism was determined in terms of peak and total release of purines (adenosine, inosine, hypoxanthine), lactate and noradrenaline during reperfusion; and myocardial content of nucleotides (ATP, ADP, AMP), glycogen and noradrenaline at the end of reperfusion. An inverse relationship (r = –0.79) existed between duration of ischemia and developed pressure post-ischemia. Early during reperfusion, after 12 min of ischemia, the purine concentration (peak release) increased 100x (p < 0.01), that of lactate and noradrenaline lOx (p < 0.05) . Total purine release rose with progression of the ischemic period (30x after 36 min of ischemia; p < 0.01), concomitant with a reduction in nucleotide content. Lactate release was independent from the duration of ischemia, although glycogen had declined by 30% (p < 0.01) after 36 min of ischemia. The acid insoluble glycogen fraction, which presumably contains proglycogen, increased substantially during short-term ischemia. Peak noradrenaline increased 100x and 200x (p < 0.05) after 24 and 36 min of ischemia, respectively. Total noradrenaline release due to various periods of ischemia mirrored its peak release. Function recovery was inversely related to total purine and noradrenaline efflux (both r =–0.81); it correlated with tissue nucleotide content (r = 0.84). In conclusion, larger amounts of noradrenaline are released only after a substantial drop in myocardial ATP. During severe ischemia ATP consumption more than limited ATP production by anaerobic glycolysis, is a key factor affecting recovery on subsequent reperfusion. In contrast to lactate efflux, purine and noradrenaline release are useful markers of ischemic and reperfusion damage.  相似文献   

16.
AIM OF THE STUDY: To determine the effects of two-staged ischemic preconditioning on myocardial noradrenaline in prolonged ischemia and reperfusion. METHODS: Thirty-two male Wistar rats anesthetised with urethane randomly divided into 2 groups: group 1 (ischemic preconditioning group, n = 16), and group 2 (control, n = 16). Myocardial interstitial noradrenaline levels were measured using a microdialysis technique. Ischemic preconditioning was elicited by two episodes: 5 min of ischemia and 10 min of reperfusion. The intermittent occlusions were followed by prolonged occlusion (60 min) and reperfusion (60 min). RESULTS: An increase in interstitial noradrenaline was observed in 10 min of prolonged ischemia in group 2, and in 20 min in group 1. After 20 min of myocardial ischemia there was a significant difference between groups (p < 0.05) in interstitial noradrenaline levels. In control group, it was 60% higher. In reperfusion, noradrenaline levels decreased markedly in group 1. CONCLUSION: We suggest that ischemic preconditioning by two episodes: 5-min ischemia and 10-min reperfusion prevents excessive noradrenaline interstitial accumulation, perhaps, through protection of physiological uptake I carrier.  相似文献   

17.
Interventions that stimulate carbohydrate oxidation appear to be beneficial in the setting of myocardial ischemia or infarction. However, the mechanisms underlying this protective effect have not been defined, in part because of our limited understanding of substrate utilization under ischemic conditions. Therefore, we used (1)H and (13)C NMR spectroscopy to investigate substrate oxidation and glycolytic rates in a global low-flow model of myocardial ischemia. Isolated male Sprague-Dawley rat hearts were perfused for 30 min under conditions of normal flow (control) and low-flow ischemia (LFI, 0.3 ml/min) with insulin and (13)C-labeled lactate, pyruvate, palmitate, and glucose at concentrations representative of the physiological fed state. Despite a approximately 50-fold reduction in substrate delivery and oxygen consumption, oxidation of all exogenous substrates plus glycogen occurred during LFI. Oxidative metabolism accounted for 97% of total calculated ATP production in the control group and approximately 30% in the LFI group. For controls, lactate oxidation was the major source of ATP; however, in LFI, this shifted to a combination of oxidative and nonoxidative glycogen metabolism. Interestingly, in the LFI group, anaplerosis relative to citrate synthase increased sevenfold compared with controls. These results demonstrate the importance of oxidative energy metabolism for ATP production, even during very-low-flow ischemia. We believe that the approach described here will be valuable for future investigations into the underlying mechanisms related to the protective effect of increasing cardiac carbohydrate utilization and may ultimately lead to identification of new therapeutic targets for treatment of myocardial ischemia.  相似文献   

18.
Experimentally, enhanced glycolytic flux has been shown to confer many benefits to the ischernic heart, including maintenance of membrane activity, inhibition of contracture, reduced arrhythmias, and improved functional recovery. While at moderate low coronary flows, the benefits of glycolysis appear extensive, the controversy arises at very low flow rates, in the absence of flow; or when glycolytic substrate may be present in excess, such that high glucose concentrations with or without insulin overload the cell with deleterious metabolises. Under conditions of total global ischemia' glycogen is the only substrate for glycolytic flux. Glycogenolysis may only be protective until the accumulation of metabolises (lactate, H+, NADH, sugar phosphates and Pi ) outweighs the benefit of the ATP produced.The possible deleterious effects associated with increased glycolysis cannot be ignored, and may explain some of the controversial findings reported in the literature. However, an optimal balance between the rate of ATP production and rate of accumulation of metabolises (determined by the glycolytic flux rate and the rate of coronary washout), may ensure optimal recovery. In addition, the effects of glucose utilisation must be distinguished from those of glycogen, differences which may be explained by functional compartmentation within the cell.  相似文献   

19.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

20.
The end-effectors of ischemic preconditioning (IPC) are not well known. It has been recently shown that transgenic mice underexpressing the gap junction protein connexin43 (Cx43) cannot be preconditioned. Because gap junctions allow spreading of cell death during ischemia-reperfusion in different tissues, including myocardium, we hypothesized that the protection afforded by IPC is mediated by effects on gap junction-mediated intercellular communication. To test this hypothesis, we analyzed the effect of IPC (5 min ischemia-5 min reperfusion x 2) on the changes in electrical impedance (four electrode probe) and impulse propagation velocity (transmembrane action potential) induced by ischemia (60 min) and reperfusion (60 min) in isolated rat hearts. IPC (n = 8) reduced reperfusion-induced lactate dehydrogenase release by 65.8% with respect to control hearts (n = 9) (P = 0.04) but had no effect on the time of onset of rigor contracture (increase in diastolic tension), electrical uncoupling (sharp changes in tissue resistivity and phase angle in impedance recordings), or block of impulse propagation during ischemia. Normalization of electrical impedance during reperfusion was also unaffected by IPC. The lack of effect of IPC on ischemic rigor contracture and on changes in tissue impedance during ischemia-reperfusion were validated under in vivo conditions in pigs submitted to 48 min of coronary occlusion and 120 min of reperfusion. IPC (n = 12) reduced infarct size (triphenyltetrazolium) by 64.9% (P = 0.01) with respect to controls (n = 17). We conclude that the protection afforded by IPC is not mediated by effects on electrical coupling. This result is consistent with recent findings suggesting that Cx43 could have effects on cell survival independent on changes in cell-to-cell communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号