共查询到20条相似文献,搜索用时 0 毫秒
1.
Marco Chacon Stephen R. Max Judith A. Kirshner J. T. Tildon 《Journal of neurochemistry》1986,47(5):1604-1608
Thyroid hormone (T3) has a multiplicity of effects on the developing nervous system. We have investigated T3 action using a cholinergic neuroblastoma cell line (S-20Y) as a model. S-20Y contains a nuclear receptor for T3 with binding properties similar to those of other T3 target tissues. In addition, these cells can carry out 5'-deiodination, which is necessary to produce active thyroid hormone in vivo. The enzyme involved in this process appears to be a type I deiodinase, based on its reaction kinetics and its susceptibility to inhibition by propylthiouracil. S-20Y cells maintained in T3-depleted medium showed decreased choline acetyltransferase (ChAT) activity. ChAT activity was restored to the control level in a dose-dependent manner by T3 repletion. Neither cell density nor viability was influenced by the hypothyroid state. The presence of a T3 receptor and the enzyme activity for T3 production, together with an effect of T3 on ChAT activity, demonstrate that S-20Y cells are a target for T3 action and suggest that these cells represent an excellent model system for studies of T3 effects on nervous tissues. 相似文献
2.
The Enzymes of Acetyl-CoA Metabolism in Differentiating Cholinergic (S-20) and Noncholinergic (NIE-115) Neuroblastoma Cells 总被引:1,自引:2,他引:1
Dibutyryl cyclic AMP and butyrate inhibited growth of S-20 (cholinergic) and NIE-115 (adrenergic) neuroblastoma clones. Both these drugs resulted in a parallel increase of choline acetyltransferase and ATP-citrate lyase activities in S-20 neuroblastoma cells. On the other hand, the increase in tyrosine hydroxylase activity in NIE-115 caused by these drugs was not accompanied by a significant change in ATP-citrate lyase activity. Both dibutyryl cyclic AMP and butyrate caused a decrease in fatty acid synthetase activity in both cell lines. The activities of pyruvate dehydrogenase, citrate synthase, choline acetyltransferase, and lactate dehydrogenase in both S-20 and NIE-115 cells were not significantly influenced by the drugs. ATP-citrate lyases from S-20 and NIE-115 had similar kinetic and immunological properties, and their subunits had the same molecular weight as the rat liver enzyme. These data indicate that the differential regulation of ATP-citrate lyase activity in cholinergic and adrenergic cells does not result from the existence of different molecular forms of the enzyme in these cell lines. They also provide further evidence to support the hypothesis that ATP-citrate lyase activity increases during maturation of normal cholinergic neurons and decreases in noncholinergic cells of the brain. 相似文献
3.
Abstract: Nerve growth factor (NGF) treatment of primary cultures of embryonic day 17 rat basal forebrain differentially altered activity of choline acetyltransferase (ChAT) and high-affinity choline transport; ChAT specific activity was increased by threefold in neurons grown in the presence of NGF for between 4 and 8 days, whereas high-affinity choline transport activity was not changed relative to control. Dose-response studies revealed that enhancement of neuronal ChAT activity occurred at low concentrations of NGF with an EC50 of 7 ng/ml, with no enhancement of high-affinity choline transport observed at NGF concentrations up to 100 ng/ml. In addition, synthesis of acetylcholine (ACh) and ACh content in neurons grown in the presence of NGF for up to 6 days was increased significantly compared with controls. These results suggest that regulation of ACh synthesis in primary cultures of basal forebrain neurons is not limited by provision of choline by the high-affinity choline transport system and that increased ChAT activity in the presence of NGF without a concomitant increase in high-affinity choline transport is sufficient to increase ACh synthesis. This further suggests that intracellular pools of choline, which do not normally serve as substrate for ACh synthesis, may be made available for ACh synthesis in the presence of NGF. 相似文献
4.
Masato Ando Mitsuyoshi Iwata Kazuya Takahama Yutaka Nagata 《Journal of neurochemistry》1987,48(5):1448-1453
The activities of choline kinase (CK) and choline acetyltransferase (ChAT) were examined in vitro in superior cervical sympathetic ganglia (SCG) excised from rats following aerobic incubation for 1 h in a medium containing various choline concentrations, with and without application of a high KCl level (70 mM). Ganglionic CK activity was strongly inhibited (by approximately 75%) at low extracellular choline concentrations (1-5 microM) but rose as the choline concentration was raised to 10-50 microM in the incubation medium, then fell and rose again with further increases in choline concentration. A similar but moderate accelerative effect on ganglionic CK activity was also observed after addition of acetylcholine (ACh; 1 mM) without eserine. Whereas specific CK activity did not change significantly in axotomized SCG, in which the ratio of glial cells to neurons is greatly increased for a week after the operation., it was remarkably increased after denervation, in which the preganglionic cholinergic nerve terminals had degenerated. When either a high KCl level or hemicholinium-3 (HC-3; 50 microM) was added to the medium in the presence or absence of choline, ganglionic CK activity was markedly inhibited. On the other hand, ChAT activity in the SCG remained at a significantly high level during incubation with low choline concentrations (1-10 microM), but the enhanced enzyme activity became inhibited as the extracellular choline concentration was raised to 50-100 microM in the medium. Addition of HC-3 to the medium did not alter ganglionic ChAT activity at low choline concentrations. However, application of quinacrine (10 microM) considerably reduced ganglionic CK activity and also suppressed ChAT activity induced by high KCl levels.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
AF64A (ethylcholine mustard aziridinium ion) was stereotaxically administered bilaterally (1 nmol/side) into rat lateral cerebral ventricles. Choline acetyltransferase (ChAT) activity and ChAT mRNA levels were measured at predetermined time points in the septo-hippocampal pathway and striatum, both well identified as rich in cholinergic neurons. AF64A caused a rapid but transient increase in ChAT mRNA (167%, P < 0.05) and ChAT activity (164%, P < 0.01) in the septum. By day 7 post treatment, there was a significant decrease in ChAT mRNA (42.5% of control, P < 0.05) in the septum although the ChAT activity still stayed high. This decreased ChAT mRNA level in the septum lasted for at least four weeks, and was paralleled by a long-lasting decrease in ChAT activity in the hippocampus. In the striatum, on the other hand, there were no observed changes in either ChAT activity or ChAT mRNA. These data suggest that the long term effect of AF64A on the septo-hippocampal cholinergic pathway may, at least in part, be due to an action of AF64A on gene expression in the cholinergic neuron. The difference in the response to AF64A between the septo-hippocampal and striatal cholinergic systems might be due to their difference in neuron types. 相似文献
6.
Abstract: These experiments investigate the effect of block, by colchicine, of fast axonal transport in the cat's cervical sympathetic trunk (CST) on the superior cervical ganglion's choline acetyltransferase (ChAT) enzyme activity, acetylcholine (ACh) content, and ACh release. Electron microscopy on the segment of the CST exposed to colchicine 1 or 4 days earlier showed disappearance of microtubules and accumulation of vesicles and smooth membrane tubules but no disruption of the axonal cytomatrix. At 4 days following colchicine treatment, the number and size of synaptic boutons per grid square in the ganglion ipsilateral to the colchicine-treated CST were similar to those in the control ganglion. At 2 and 4 days following exposure of the CST to colchicine, ChAT activity in the ipsilateral ganglion was reduced to 76 ± 8 and 54 ± 6% of control values, respectively. ACh stores in the ganglia were also reduced (to 81 ± 6% of control values at 2 days and to 51 ± 5% of control values at 4 days). Ganglionic transmission and its sensitivity to blockade by hexamethonium during 2-Hz CST stimulation were not impaired at day 4 postcolchicine. ACh release evoked by 2-Hz stimulation of colchicine-treated axons was similar to release from untreated axons, despite the decrease in the ganglionic ACh content. In contrast, ACh release evoked by 20-Hz stimulation was depressed. The amount of ACh released during 5-Hz stimulation in the presence of vesamicol by the terminals of colchicine-treated axons was similar to that released by the terminals of untreated axons. These results suggest the following conclusions: (a) Colchicine-sensitive fast axonal transport contributes significantly to maintaining ChAT stores in preganglionic axon terminals. (b) The half-life of ChAT in sympathetic preganglionic terminals is ~4 days. (c) One consequence of colchicine-induced block of axonal transport is a reduced ACh content of preganglionic nerve terminals. (d) This decrease in ACh content appears to be the result of a loss in a reserve transmitter pool, whereas the size of the readily releasable compartment is maintained. 相似文献
7.
Wessler I Schwarze S Brockerhoff P Bittinger F Kirkpatrick CJ Kilbinger H 《Neurochemical research》2003,28(3-4):489-492
The activity of choline acetyltransferase (ChAT) was investigated in the human placenta before and after long-term incubation (24 h) to test the effects of sex hormones, nicotine and forskolin. ChAT activity differed considerably between the amnion (0.03 mol/mg protein/h) and the villus (0.56). After long-term incubation, ChAT activity persisted in the latter but declined in the amnion. Neither sex hormones (-estradiol, testosterone, progesterone; 10 or 100 nM each) nor follicle stimulating hormone and luteinizing hormone (FSH/LH; 8.4 U/ml each) modified ChAT activity. Also nicotine (1 nM–100 M) did not affect ChAT activity. Forskolin, an activitor of adenylyl cyclase, reduced ChAT activity in the villus but not in amnion. The present model offers the possibility to investigate ChAT regulation in intact tissue under long-term incubation. The risks of maternal smoking during pregnancy cannot be attributed to an effect of nicotine on placental ChAT activity. Differences in the regulation of ChAT appear to exist between neuronal and nonneuronal cells. 相似文献
8.
The effects of treatment with L-thyroxine (subcutaneously 0.3 microgram/g body weight daily from birth, i.e., day 1) and 2.5S nerve growth factor (NGF; intraventricularly 2 micrograms on 1, 3, 5, 7, and 9 postnatal days), separately and together, were studied on the biochemical development of different cell types in the basal forebrain of 10-day-old rats. The development of cholinergic, gamma-aminobutyric acid-ergic (GABAergic), and glutamatergic neurons was monitored respectively in terms of choline acetyltransferase (ChAT), glutamate decarboxylase (GAD), and glutaminase activities, whereas glutamine synthetase (GS) and 2',3'-cyclic nucleotide-3'-phosphohydrolase (CNPase) activities were used to judge the maturation of astroglial and oligodendroglial cells. Treatment with either thyroid hormone or NGF from birth significantly increased the expression of ChAT activity in the basal forebrain of neonatal rats. When both agents were administered to the same animal, in agreement with our earlier in vitro findings, the stimulation in ChAT activity was much greater than the sum of the individual effects. In hypothyroid rats, significant effects of NGF at the low doses used were not detectable, although the increase of ChAT activity induced by thyroxine was potentiated by NGF in these animals. Under the present experimental conditions neither thyroxine nor NGF treatment had an appreciable effect on the activities of glutaminase, GS, and lactate dehydrogenase. However, the administration of thyroxine markedly increased CNPase activity in normal rats, whereas in hypothyroid rats the effect on both CNPase and GAD was also significant. Similar elevations in CNPase and GAD activities were not observed after NGF treatment, suggesting that the effect of NGF was specific to the cholinergic cells.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
We investigated the influence of the polyunsaturated docosahexaenoic acid (22:6n-3; DHA) on the constitutive expression of choline acetyltransferase (ChAT) in native and induced expression in differentiated cholinergic cells NG108-15 grown in serum-free medium. Elimination of serum-derived trophic support resulted in growth arrest and a strong decrease of ChAT activity. In either conditions, DHA largely rescued general indicators of cell growth and function, and partially prevented the decrease of ChAT activity. However, the maximal effect on general cell state in native and differentiated cells, and ChAT activity in native cells, was reached at or below 10 μmol/l of DHA. In contrast, maximal induction of ChAT activity in differentiated cells required about six times higher concentrations of DHA. These data thus demonstrate stimulatory effect of DHA on ChAT activity that is independent of its general cell protective properties. 相似文献
10.
Intracellular Calcium Homeostasis in a Human Neuroblastoma Cell Line: Modulation by Depolarization, Cholinergic Receptors, and α-Latrotoxin 总被引:1,自引:3,他引:1
E. Sher C. Gotti A. Pandiella L. Madeddu F. Clementi 《Journal of neurochemistry》1988,50(6):1708-1713
Intracellular calcium homeostasis and its modulation by different agents was studied in control and differentiated IMR32 human neuroblastoma cells by using the Ca2+-sensitive fluorescent dye quin2. The results obtained demonstrate the existence in IMR32 cells of (a) voltage-dependent, verapamil sensitive, Ca2+ channels, which are expressed before differentiation; (b) muscarinic receptors whose activation triggers both Ca2+ influx and Ca2+ redistribution from intracellular stores, whereas nicotinic receptors and alpha-bungarotoxin binding sites do not; and (c) receptors for alpha-latrotoxin (the major toxin of the black widow spider venom), which are well-known markers of the neuronal presynaptic membrane. Up to now, no cell lines of human origin sensitive to this toxin have been identified. These results confirm that IMR32 cells are very convenient model cells for studying specific aspects of the neurochemistry and neurobiology of the human neuron at the molecular and cellular levels. 相似文献
11.
Clonal cell line NCB-20 (a hybrid of mouse neuroblastoma N18TG2 and Chinese hamster 18-day embryonic brain expiant) expressed both high- (KD 180 nM) and low-affinity (>3000 nM) binding sites for [3H]serotonin (5-HT) which were absent from the parent neuroblastoma. The low-affinity binding site was eliminated by 1 μM spiperone. The order of drug potency for inhibition of high-affinity [3H]5-HT binding was consistent with a 5-HT1 receptor (5,6 - dihydroxytryptamine = 5-HT = methysergide = 5-methoxytryptamine > cyproheptadine = clozapine = mianserin > spiperone > dopamine = morphine = ketanserin = norepinephrine). [3H]5-HT binding was inhibited by guanine nucleotides (e.g., GTP and Gpp(NH)p), whereas antagonist binding was not; as-corbate was also inhibitory. A 30-min exposure of cells to 1—2 μM 5-HT or other agonists produced a three- to fivefold stimulation of cyclic AMP levels. The order of potency for 5-HT agonist stimulation of basal cyclic AMP levels and 5-HT antagonist reversal of agonist-stimulated levels was the same as the order of drug potency for inhibition of high-affinity [3H]5-HT binding, suggesting linkage of the 5-HT1 receptor to adenylate cyclase in NCB-20 cells. 相似文献
12.
13.
Olguta Macovschi Annie-France Prigent Georges Nemoz Henri Pacheco 《Journal of neurochemistry》1987,49(1):107-114
For clarification of the beneficial effects of the extract of Ginkgo biloba (EGB) on triethyltin (TET) toxicity in rats, the phosphodiesterase (PDE) activities of the cerebral tissue were measured under in vitro and ex vivo conditions. Under in vitro conditions, low concentrations of EGB (0.25-4.0 mg/L) activated the enzyme, whereas after higher concentrations (5-250 mg/L), dose-dependent inhibition of the enzyme activity was observed. In the lower concentration range, the extract also partially restored the high-affinity PDE activity (measured with 0.25 microM cyclic AMP) of the particulate fraction of the brain inhibited by TET in vitro. In contrast, the inhibitory influence of TET on the low-affinity PDE activity (measured with 50 microM cyclic AMP) of the particulate fraction was enhanced by the extract. Although treatment with a single large dose of EGB lowered the particulate PDE activities of the brain of normal rats, no effects of the extract could be detected in animals after repeated daily administrations of EGB during a 4-day period. Curative treatment of the TET-intoxicated rats with EGB during a 7-day period accelerated the recovery of the edematous state of the white matter caused by the intoxication and also normalized the lowered PDE activity of the particulate fraction of the edematous brain tissue. Furthermore, when preventively administered, EGB counteracted both the edema formation and the fall in PDE activity observed with treatment by TET alone. These observations strongly suggest that some beneficial effects of EGB might be due to its modulating influences on cellular cyclic AMP levels via activation of membrane-bound PDE. 相似文献
14.
5β-Pregnane-3α, 17α, 20α, 21-tetrol (l) and 5β-pregnane-3α, 17α 20β, 21-tetrol (II) have been isolated and identified from the urine of a girl with congenital adrenal hyperplasia. The total 5β-pregnane-3α, 17α, 20(α+β),21-tetrol consisted of 60% of I and 40% of II. The final identity of the compounds was established by gas chromatography — mass spectrometry. The mass spectra of the two trimethylsilyl isomers were closely related to each other in contrast to the spectra of five other pairs of C21-C-20(α and β)-hydroxy steroid-trimethylsilyl-ethers. The mass spectra of free I and II also exhibited many common features, but were less similar to each other than their trimethylsilyl derivatives. 相似文献
15.
Abstract: Cultured astrocytes have been shown to secrete various neuropeptides and the neuropeptide processing enzyme, carboxypeptidase E (CPE). The secretion of CPE enzymatic activity from astrocytes has been shown previously to be increased approximately twofold by treatment with tetradecanoylphorbol 13-acetate (TPA), a phorbol ester. In this study, metabolic labeling with [35 S]Met was utilized to examine the effect of TPA on the biosynthesis of CPE protein in cultured astrocytes and in AtT-20 cells, a pituitary-derived cell line. Treatment of astrocytes with 0.1 μg/ml TPA for 24 h caused an 80% increase in the level of radiolabeled CPE in both the media and the cells, indicating that the synthesis of CPE was stimulated by the TPA. AtT-20 cells also secreted more radiolabeled CPE in response to TPA, but this increase was offset by a proportional decrease in the cellular level of radiolabeled CPE, and synthesis of CPE was not stimulated in this cell line. Northern blot analysis demonstrated that 0.1 μg/ml TPA elevated CPE mRNA by approximately 50% in cultured astrocytes but not in AtT-20 cells. Quantitative in situ hybridization studies demonstrated that the TPA-induced increase in CPE mRNA expression was largely due to increases in the number of cells expressing CPE mRNA, although for astrocytes from some brain regions the average level of CPE mRNA per cell was also elevated by TPA. These results suggest that astrocytes can be induced to express CPE, which is consistent with a role for astrocytes in intercellular signaling. 相似文献
16.
Summary Putative cholinergic neurons in the photosensory pineal organ of a cyprinid teleost, the European minnow, were studied by use of choline acetyltransferase (ChAT) immunocytochemistry and acetylcholinesterase (AChE) histochemistry. Pinealofugally projecting neurons were visualized using retrograde HRP-filling through their cut axons. For comparison, the distribution of choline acetyltransferase immunoreactivity (ChAT-IR) and AChE-positive elements in the retina was investigated.While the distributional patterns of ChAT-IR and strongly AChE-positive perikarya in the retina are similar and may represent the same neuronal population, ChAT-IR and AChE-positive elements in the pineal organ appear to belong to separate populations. In the retina, small- to medium-sized perikarya in the inner nuclear layer, and small perikarya in the ganglion cell layer are ChAT-IR and AChE positive. The entire inner plexiform layer is AChE positive, while only sublaminae 1, 2 and 4 are ChAT-IR. No indication of cholinergic activity was observed in the optic axon layer.In the pineal organ, ChAT-IR is restricted to small perikarya situated rostrally and dorsally in the pineal end-vesicle. AChE-positive neurons are present throughout the pineal end-vesicle and the pineal stalk. The pineal tract (the pinealofugally projecting axons of intrapineal neurons) is strongly AChE positive, but displays no ChAT-IR. The distribution of pinealofugally projecting neurons, labeled with retrogradely transported HRP, is markedly dissimilar to that of the ChAT-IR elements. It is proposed that the photosensory pineal organ transmits photic information to the brain via a non-cholinergic pathway. The possibility that the ChAT-IR neurons represent small local interneurons is discussed in the light of comparative physiological and anatomical findings. 相似文献
17.
18.
19.
Krista R. Kelly Michelle L. Harrison Daniele D. Size 《Journal of applied animal welfare science : JAAWS》2013,16(1):17-31
Stereotypical behaviors in captive polar bears (Ursus maritimus) can be detrimental to their welfare. These behaviors can be reduced through enrichment programs but are often not completely eliminated, so identifying potential triggers is important. The present study investigated the influences of seasonal changes, visitor density, and concurrent bear activity on stereotypical behaviors exhibited by 3 captive polar bears at the Toronto Zoo. All bears exhibited these behaviors; however, individual differences were found in duration and form. The male exhibited less stereotypical behavior during spring, and the females exhibited less stereotypical behavior during winter. An increase in visitor density was associated with more stereotypical behavior in 1 female but less stereotypical behavior in the other 2 bears. All bears engaged in more stereotypical behaviors when the other bears were inactive, and 1 female engaged in more stereotypical behaviors when the other bears were out of sight. Further, when conspecifics were active, all bears engaged in less stereotypical behaviors. Given the variability among individual bears, future enrichment programs must be tailored to the needs of individuals to maximize efficacy. 相似文献
20.
Haidar S Ehmer PB Barassin S Batzl-Hartmann C Hartmann RW 《The Journal of steroid biochemistry and molecular biology》2003,84(5):555-562
Aiming at the development of new drugs for the treatment of prostate cancer, the effects of steroidal compounds and one non-steroidal substance on androgen biosynthesis were evaluated in vitro and in vivo. Sa 40 [17-(5-pyrimidyl)androsta-5,16-diene-3beta-ol], its 3-acetyl derivate Sa 41 and BW 19 [3,4-dihydro-2-(4-imidazolylmethyl)-6-methoxy-1-methyl-naphthalene] are compounds from our group, which have been developed as inhibitors of CYP 17 (17alpha-hydroxylase-C17, 20-lyase, the key enzyme in androgen biosynthesis). They have been compared with CB 7598 [abiraterone: 17-(3-pyridyl)androsta-5,16-diene-3beta-ol], its 3-acetyl compound CB 7630 and ketoconazole, compounds which already have been used clinically. The most potent compound toward human CYP 17 (testicular microsomes) was Sa 40 (IC(50) value of 24 nM), followed by Sa 41, CB 7598, BW 19, CB 7630 and ketoconazole. Sa 40 shows a type II difference spectrum and a non-competitive type of inhibition (K(i) value of 16 nM). No recovery of enzyme activity was observed after preincubation of CYP 17 with Sa 40 and subsequent charcoal treatment. In Escherichia coli cells coexpressing human CYP 17 and NADPH-P450 reductase, Sa 40 was more active than CB 7598 and BW 19, whereas the acetyl compounds were not active. The latter three compounds were equally active towards rat CYP 17. Male Sprague-Dawley (SD) rats were administered daily for 14 days BW 19 and the acetyl derivatives Sa 41 and CB 7630 as prodrugs (0.1 mmol/kg intraperitoneally). The test compounds strongly reduced plasma testosterone concentration, as well as prostate and seminal vesicles weights. They showed moderate inhibitory effects on the weights of levator ani, bulbocavernosus and testes, whereas they led to an increase in adrenal and pituitary weights. The only exception was BW 19 which did not change pituitary weights. Based on its superiority on the human enzyme, it was concluded that Sa 40 in its 3beta-acetate form (Sa 41) could be a promising candidate for clinical evaluation. 相似文献