首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid hormone (T3) has a multiplicity of effects on the developing nervous system. We have investigated T3 action using a cholinergic neuroblastoma cell line (S-20Y) as a model. S-20Y contains a nuclear receptor for T3 with binding properties similar to those of other T3 target tissues. In addition, these cells can carry out 5'-deiodination, which is necessary to produce active thyroid hormone in vivo. The enzyme involved in this process appears to be a type I deiodinase, based on its reaction kinetics and its susceptibility to inhibition by propylthiouracil. S-20Y cells maintained in T3-depleted medium showed decreased choline acetyltransferase (ChAT) activity. ChAT activity was restored to the control level in a dose-dependent manner by T3 repletion. Neither cell density nor viability was influenced by the hypothyroid state. The presence of a T3 receptor and the enzyme activity for T3 production, together with an effect of T3 on ChAT activity, demonstrate that S-20Y cells are a target for T3 action and suggest that these cells represent an excellent model system for studies of T3 effects on nervous tissues.  相似文献   

2.
Choline-O-acetyltransferase (ChAT) is the enzyme which catalyses the biosynthesis of the neurotransmitter acetylcholine in cholinergic neurons. Here we show that in mouse cholinergic NS-20Y neuroblastoma cells cultured in the presence of either okadaic acid (serine/threonine phosphatases 1 and 2A inhibitor) or KN-62 (CaM kinase inhibitor) ChAT activity and mRNA either increased or decreased as a function of the drug concentration, respectively. After 24 h exposure, okadaic acid exerted a dramatic effect on cell morphology; cells became round and had no more neurites. On the contrary, KN-62 induced a slight morphological differentiation of the cells.The present results suggest that phosphatases 1 and 2A and CaM kinase could mediate regulation of ChAT gene expression.  相似文献   

3.
4.
Abstract: Colchicine (5–10 μ M ) increased choline ace-tyltransferase (ChAT) activity 5–10-fold and suppressed acetylcholinesterase (AChE) and glutamate decarboxylase (GAD) activities to 30% and 50%, respectively, of the levels of control cells in mouse spinal cord cells cultured for several days. The synthesis of radiolaheled acetylcholine (ACh) from [14C]choline was also enhanced 4.6-fold, although the uptake of [14C]choline into cells was decreased to 80% of control level. Neither the incorporation of [3H]Ieucine into protein nor the total amount of protein was increased by colchicine. Vinblastine also increased ChAT activity while cytochalasin B was not effective. Immunochemical titration study revealed that the increase of ChAT activity by colchicine was due to the accumulation of ChAT molecules. Co-culture of spinalcord cells with skeletal muscle markedly stimulated ChAT activity, and the addition of colchicine to the co- cultures showed greater than additive effect. These observations indicate that colchicine increases ChAT molecules in a specific manner, that the stimulatory effect of colchicine on ChAT activity is possibly mediated via the interaction with microtubules, and that the increase of ChAT activity is based on a mechanism different from that of co-cultures with skeletal muscle cells.  相似文献   

5.
Abstract— DBcAMP induces morphological differentiation of mouse neuroblastoma cells grown in culture. DBcGMP or 8-Br cyclic GMP when added alone also induces a discrete morphological differentiation. When analogues of cyclic GMP were added together with dBcAMP, neurite outgrowth was strikingly enhanced as compared to the effect of dBcAMP alone. Intracellular concentrations of cyclic GMP were increased during dBcAMP treatment and cyclic AMP levels were increased during 8-Br cyclic GMP treatment. Both treatments produced an increased protein kinase activity, supporting the possibility that not only cyclic AMP but also cyclic GMP may be involved in the differentiation process.  相似文献   

6.
We studied the effects of insulin, nerve growth factor (NGF), and tetrodotoxin (TTX) on cellular metabolism and the activity of glutamic acid decarboxylase (GAD) and choline acetyltransferase (ChAT) in neuron-rich cultures prepared from embryonic day 15 rat striatum. Insulin (5 micrograms/ml) increased glucose utilization, protein synthesis, and GAD activity in cultures plated over a range of cell densities (2,800-8,400 cells/mm2). TTX reduced GAD activity; NGF had no effect on GAD activity. Insulin treatment reversibly reduced ChAT activity in cultures plated at densities of greater than 4,000 cells/mm2, and the extent of this reduction increased with increasing cell density. The number of acetylcholinesterase-positive neurons was not reduced by insulin, suggesting that insulin acts by down-regulating ChAT rather than by killing cholinergic neurons. Insulin-like growth factor-1 (IGF-1) reduced ChAT activity at concentrations 10-fold lower than insulin, suggesting that insulin's effect on ChAT may involve the IGF-1 receptor. NGF increased ChAT activity; TTX had no effect on ChAT activity. These results suggest that striatal cholinergic and GABAergic neurons are subject to differential trophic control.  相似文献   

7.
Induction of Cholinergic Expression in Developing Spinal Cord Cultures   总被引:2,自引:2,他引:0  
The induction of choline acetyltransferase (ChAT) by cAMP derivatives was studied in dissociated spinal cord cultures. Dibutyryl cAMP (dbcAMP) and 8-bromo cAMP (1 mM) produced a 2-3-fold stimulation of ChAT activity in developing cultures whereas 8-bromo cGMP had no effect. A phosphodiesterase inhibitor, 3-isobutyl-l-methylxanthine, also increased (2-fold) ChAT activity in immature cultures. Significant elevations in ChAT were detected after 2 h incubation with dbcAMP. Maximum enzyme induction was observed 24 h after dbcAMP supplementation to the culture medium. Developmental studies revealed that ChAT could be induced on days 2-16 in culture. The largest induction of ChAT activity was observed on day 7 in culture. After day 19, when control enzyme activity attained levels of mature cultures, cAMP-mediated ChAT induction was no longer observed. Cycloheximide and actinomycin D blocked ChAT induction whereas basal enzyme activity remained unaffected. Culture protein content was not changed after 1-day exposure to dbcAMP. 125I-Tetanus toxin fixation after dbcAMP treatment revealed a 20% decrease from control in neuronal surface during days 7-9 in culture. These data indicated that cAMP derivatives produced a rapid increase in cholinergic expression during a specific period of development in spinal cord cultures. There appears to be specificity to this effect, as total neuronal surface does not respond in the same manner as ChAT activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Our previous microdialysis study of freely moving rats demonstrated that 3 pyrethroids, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) differentially modulate acetylcholine (ACh) release in the hippocampus. To better understand the mechanisms of their modulatory effects and also other effects on the cholinergic system in the brain, the activities of ACh hydrolyzing enzyme acetylcholinesterase (AChE), ACh synthesizing enzyme choline acetyltransferase (ChAT) and ACh synthesizing rate-limiting step, high-affinity choline uptake (HACU) were examined in the present study. The pyrethroids studied had no effect on AChE activity in the cortex, hippocampus and striatum. These pyrethroids had no significant effect on ChAT in the cortex and hippocampus, but striatal ChAT was increased at higher dosage (60 mg/kg) by all three compounds. Lineweaver-Burk analysis of hippocampal HACU revealed that the pyrethroids did not alter the Michaelis-Menten constant (Km) value but caused alteration of maximal velocity (Vmax). Allethrin (60 mg/kg) and cyhalothrin (20 and 60 mg/kg) decreased while deltamethrin (60 mg/kg) increased the Vmax for HACU. In vitro study showed that at higher concentrations (> or = 10(-) (6) M) allethrin and cyhalothrin reduced the hippocampal HACU but deltamethrin increased it. These results suggest that mechanisms of ACh synthesis are involved in the modulatory effects of the pyrethroids on ACh release and other cholinergic activities.  相似文献   

9.
The cerebellum of young rats contains significant 5'-deiodinase (5'-D) activity, but technical difficulties have made it impossible to identify the enzyme in cultured cerebellar astrocytes. We have developed a culture method which allows cerebellar astrocytes from 6-day-old rats to grow and develop 5'-D activity. Astrocytes cultured for 2 weeks in medium containing 3.25 microM reduced glutathione (GSH) and 0.21 microM vitamin E (VitE) as alpha-tocopherol had 5'-D activity which was stimulated by 1 mM dibutyryl cyclic adenosine monophosphate (dBcAMP) given 16 hours before measuring enzyme activity. Cells cultured without GSH and VitE showed little 5'-D activity, which was not stimulated by dBcAMP Primary cultures of cerebellar astrocytes were cultured for four weeks with or without GSH+VitE, and stimulated by dBcAMP had high 5'-D activity, but were also sometimes contaminated with fibroblasts. The effect of such contamination on the astrocyte 5'-D activity was assessed by preparing primary cultures of fibroblasts from the meninges surrounding 6-day-old rat cerebella. They were grown in the same media and under the same conditions as the astrocytes. The cultured fibroblasts had 5'-D activity independent of GSH+VitE or culture time. The 5'-D activity of both cell populations could be type II 5'-deiodinase (5'-DII) because it was not inhibited by 6-n-propylthiouracil (PTU). Thus, cerebellar astrocytes cultured for 2 weeks in medium containing GSH and VitE have 5'-DII activity. Prolonged cultures favor enzyme activity, but also enhance contamination with fibroblasts, which may also show 5'-DII activity.  相似文献   

10.
Abstract: Stably transfected cells expressing mouse choline acetyltransferase (ChAT) cDNA were established, and the synthesis and release of acetylcholine (ACh) were examined. A cDNA clone coding for mouse ChAT was inserted into an expression vector (pEF321) containing a promoter for human elongation factor 1α to construct pEFmChAT. Neuronal (NG108-15, NS20Y, N1E115, and Neuro2A) and nonneuronal cell lines (L cells and NIH3T3) were transfected with pEFmChAT, and the cell lines that stably expressed high ChAT activity were selected. These cells expressed the 66-kDa ChAT protein and accumulated ACh mostly in the cytosol. The concentration of intracellular ACh in the cells increased upon raising the choline level in the medium. The cells continuously released ACh in a Ca2+-independent fashion. Neither high K+ nor calcium ionophore stimulated release of ACh from the cells.  相似文献   

11.
12.
Forskolin induction of S-100 protein in glioma and hybrid cells   总被引:4,自引:0,他引:4  
The S-100 protein level in mouse neuroblastoma (N18TG-2 and NIE-115), rat glioma (C6, C6BU-1, and C6V-1), and hybrid (NG108-15, 140-3, 141-B, NBr10A, NBr20A, NCB20, and NX3IT) cells was determined with a sensitive enzyme immunoassay system that uses a rabbit antibody to bovine brain S-100 protein. S-100 protein was detected in glioma but not in neuroblastoma cells. All seven hybrid cells derived from neuroblastoma and glioma or other types of cells were found to possess a very little or undetectable S-100 protein. The induction of S-100 protein level in prestationary phase cultures of glioma C6BU-1 cells was examined by forskolin, which was a highly specific activator of adenylate cyclase of the cells and produced morphological differentiation. After incubation with 10 microM forskolin for 48 hr, the S-100 protein level increased 2-2.5-fold in C6BU-1 glioma cells whose mean control level was 60 +/- 26 ng/mg protein (+/- SD). The forskolin induction of S-100 protein in the cells was dose dependent, and the concentration of forskolin required for 50% activation of S-100 protein was about 0.6 microM. The increase by forskolin was initiated from 10-15 hr after incubation with it and was inhibited with cycloheximide and actinomycin D. In NG108-15 hybrid cells the induction of S-100 protein was also observed by forskolin as well as prostaglandin (PG) E1 plus theophylline which are known to activate adenylate cyclase of the cells. The results indicate that S-100 protein biosynthesis is genetically controlled in these clonal cells, and that S-100 protein can be regulated in a cAMP-dependent fashion in prestationary cultures.  相似文献   

13.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein as well as a classic glycolytic enzyme, and its pleiotropic functions are achieved by various post-translational modifications and the resulting translocations to intracellular compartments. In the present study, GAPDH in the plasma membrane of BeWo choriocarcinoma cells displayed a striking acidic shift in two-dimensional electrophoresis after cell-cell fusion induction by forskolin. This post-translational modification was deamidation of multiple glutaminyl residues, as determined by molecular mass measurement and tandem mass spectrometry of acidic GAPDH isoforms. Transglutaminase (TG) inhibitors prevented this acidic shift and reduced cell fusion. Knockdown of the TG2 gene by short hairpin RNA reproduced these effects of TG inhibitors. Various GAPDH mutants with replacement of different numbers (one to seven) of Gln by Glu were expressed in BeWo cells. These deamidated mutants reversed the suppressive effect of wild-type GAPDH overexpression on cell fusion. Interestingly, the mutants accumulated in the plasma membrane, and this accumulation was increased according to the number of Gln/Glu substitutions. Considering that GAPDH binds F-actin via an electrostatic interaction and that the cytoskeleton is rearranged in trophoblastic cell fusion, TG2-dependent GAPDH deamidation was suggested to participate in actin cytoskeletal remodeling.  相似文献   

14.
We investigated the influence of the polyunsaturated docosahexaenoic acid (22:6n-3; DHA) on the constitutive expression of choline acetyltransferase (ChAT) in native and induced expression in differentiated cholinergic cells NG108-15 grown in serum-free medium. Elimination of serum-derived trophic support resulted in growth arrest and a strong decrease of ChAT activity. In either conditions, DHA largely rescued general indicators of cell growth and function, and partially prevented the decrease of ChAT activity. However, the maximal effect on general cell state in native and differentiated cells, and ChAT activity in native cells, was reached at or below 10 μmol/l of DHA. In contrast, maximal induction of ChAT activity in differentiated cells required about six times higher concentrations of DHA. These data thus demonstrate stimulatory effect of DHA on ChAT activity that is independent of its general cell protective properties.  相似文献   

15.
Incubation of cultured bovine vascular smooth muscle cells (VSMC) with forskolin increased cAMP as measured by an increase in cAMP-dependent protein kinase (PKA) activation (PKA ratio). Forskolin also produced a concentration- and time-dependent increase in activity (3–5-fold within 15 min) of a PDE4 (cAMP-specific cyclic nucleotide phosphodiesterase). The increase in PDE4 activity was not affected by cycloheximide and thus not likely due to increased synthesis of the enzyme. Activation, which was preserved during partial purification of the enzyme by chromatography on Sephacryl S-200 and MonoQ, was most likely due to a covalent modification. Incubation of cell homogenates with the catalytic subunit of PKA (PKAc) induced a ∼5-fold activation of PDE4 with a time course similar to that in intact cells after forskolin addition. The forskolin-mediated activation was reversed during incubation of homogenates at room temperature for two hours. Addition of PKAc resulted in rapid reactivation of PDE4. These data are consistent with the hypothesis that rapid, reversible activation of PDE4 in cultured VSMC is mediated by PKA.  相似文献   

16.
J C Martinou  I Martinou  A C Kato 《Neuron》1992,8(4):737-744
We present evidence that the cholinergic differentiation factor (CDF), originally purified from cardiac and skeletal muscle cell-conditioned medium and found to be identical to leukemia inhibitory factor (LIF), promotes survival of embryonic day 14 rat motoneurons in vitro. These neurons were retrogradely labeled with the fluorescent tracer Dil and enriched on a density gradient or purified to homogeneity by fluorescence-activated cell sorting. Subnanomolar concentrations of CDF/LIF supported the survival of 85% of the motoneurons that would have died between days 1 and 4 of culture. The enhanced survival was accompanied by a 4-fold increase in choline acetyltransferase (ChAT) activity per culture. CDF/LIF also increased ChAT activity in dorsal spinal cord cultures, but had no detectable effect on ChAT levels in septal or striatal neuronal cultures. For comparison, other neurotrophic molecules were tested on motoneuron cultures. Ciliary neurotrophic factor had effects on motoneuron survival similar to those of CDF/LIF, whereas basic fibroblast growth factor was somewhat less effective. Nerve growth factor had no effect on the survival of rat motoneurons.  相似文献   

17.
Dibutyryl cyclic monophosphate (dBcAMP) has been shown to inhibit growth, and alter the morphology of astrocytes. However, the potential contribution of its hydrolytic product, butyrate, in inducing some of the changes that have been attributed to dBcAMP, is not clear. DNA, RNA, and purine synthesis were therefore studied in primary astrocyte cultures after 24 hours of exposure to varying concentrations of butyrate, dBcAMP, and agents that increase intracellular cAMP levels. Progression of cells through cell cycle was also studied by flow cytometry. Dibutyryl cAMP partially arrested cells in Go/G1 phase of cell cycle while sodium butyrate increased the percentage population of cells in G2/M phase. DNA synthesis and de novo purine synthesis were inhibited after treatment with dBcAMP, sodium butyrate, and various drugs that increase intracellular cAMP levels. RNA synthesis was increased with cAMP but was not affected by sodium butyrate. Our study shows that at millimolar concentrations, butyrate is capable of altering the cell cycle and inhibiting DNA synthesis in primary astrocyte cultures, in a manner that is similar although not identical to the effects of dBcAMP.  相似文献   

18.
19.
20.
The effects of intraperitoneally administered 4-(1-naphthylvinyl)pyridine (NVP; 200 mg/kg) on the concentrations of acetylcholine (ACh), choline (Ch), and acetyl-CoA (AcCoA) in rat striatum, cortex, hippocampus, and cerebellum were investigated. Twenty minutes after treatment, the content of ACh was significantly diminished, whereas that of Ch was increased. In response to stress (swimming for 20 min), these changes were enhanced. However, the AcCoA content did not change in any of the brain regions. It is thus very likely that the decrease of brain ACh concentration induced by NVP is due to the drug's effect on choline acetyltransferase (ChAT) and/or the reduction of the high-affinity Ch uptake, and not on the availability of AcCoA. Presumably, the pharmacologically diminished activity of ChAT may become the rate-limiting factor in the maintenance of ACh levels in cholinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号