首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system.  相似文献   

2.
1. Fragile X syndrome, the most common form of inherited mental retardation,iscaused by the lack or dysfunction of fragile X mental retardationprotein (FMRP). The I304N mutation in the RNA-binding domain of FMRP results in an exceptionally severe form of mental retardation.2. We have investigated the subcellular localization of FMRP and its I304N-mutated form in cultured hippocampal neurons and PC12 cells, using immunofluorescence microscopy. In PC12 cells, FMRP was predominantly localized to the cytoplasm and also to the processes after differentiation by NGF.3. In cultured hippocampal neurons, granular labeling was detected along the neuronal processes.4. Double-labeling with synaptophysin antibody revealed FMRP at synaptic sites in neurons.5. The I304N mutation did not appear to affect the transport of FMRP to dendrites or its localization at synaptic sites. Thus, FMRP is a synaptic protein and the severe phenotype observed in the patient with the I304N mutation is not produced by alterations in dendritic transport.  相似文献   

3.
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of expression of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein with high specificity for G-quartet RNA structure. FMRP is involved in several steps of mRNA metabolism: nucleocytoplasmic trafficking, translational control and transport along dendrites in neurons. Fragile X Related Protein 1 (FXR1P), a homologue and interactor of FMRP, has been postulated to have a function similar to FMRP, leading to the hypothesis that it can compensate for the absence of FMRP in Fragile X patients. Here we analyze the ability of three isoforms of FXR1P, expressed in different tissues, to bind G-quartet RNA structure specifically. Only the longest FXR1P isoform was found to be able to bind specifically the G-quartet RNA, albeit with a lower affinity as compared to FMRP, whereas the other two isoforms negatively regulate the affinity of FMRP for G-quartet RNA. This result is important to decipher the molecular basis of fragile X syndrome, through the understanding of FMRP action in the context of its multimolecular complex in different tissues. In addition, we show that the action of FXR1P is synergistic rather than compensatory for FMRP function.  相似文献   

4.
Fragile X mental retardation syndrome, the most common form of inherited mental retardation, is caused by the absence of the fragile X mental retardation protein (FMRP). FMRP has been shown to use its arginine-glycine-glycine (RGG) box to bind to a subset of RNA targets that form a G quadruplex structure. We performed a detailed analysis of the interactions between the FMRP RGG box and the microtubule associated protein 1B (MAP1B) mRNA, a relevant in vivo FMRP target. We show that MAP1B RNA forms an intramolecular G quadruplex structure, which is bound with high affinity and specificity by the FMRP RGG box. We determined that hydrophobic interactions are important in the FMRP RGG box-MAP1B RNA association, with minor contributions from electrostatic interactions. Our findings that at low protein:RNA ratios the RNA G quadruplex structure is slightly stabilized, whereas at high ratios is unfolded, suggest a mechanism by which the FMRP concentration variation in response to a neurotransmitter stimulation event could act as a regulatory switch for the protein function, from translation repressor to translation activator.  相似文献   

5.
Fragile X syndrome is caused by the absence of the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein. FMRP is associated with messenger RiboNucleoParticles (mRNPs) present in polyribosomes and its absence in neurons leads to alteration in synaptic plasticity as a result of translation regulation defects. The molecular mechanisms by which FMRP plays a role in translation regulation remain elusive. Using immunoprecipitation approaches with monoclonal Ab7G1-1 and a new generation of chicken antibodies, we identified Caprin1 as a novel FMRP-cellular partner. In vivo and in vitro evidence show that Caprin1 interacts with FMRP at the level of the translation machinery as well as in trafficking neuronal granules. As an RNA-binding protein, Caprin1 has in common with FMRP at least two RNA targets that have been identified as CaMKIIα and Map1b mRNAs. In view of the new concept that FMRP species bind to RNA regardless of known structural motifs, we propose that protein interactors might modulate FMRP functions.  相似文献   

6.
The autism‐related protein Fragile X mental retardation protein (FMRP) is an RNA binding protein that plays important roles during both nervous system development and experience dependent plasticity. Alternative splicing of the Fmr1 locus gives rise to 12 different FMRP splice forms that differ in the functional and regulatory domains they contain as well as in their expression profile among brain regions and across development. Complete loss of FMRP leads to morphological and functional changes in neurons, including an increase in the size and complexity of the axonal arbor. To investigate the relative contribution of the FMRP splice forms to the regulation of axon morphology, we overexpressed individual splice forms in cultured wild type rat cortical neurons. FMRP overexpression led to a decrease in axonal arbor complexity that suggests that FMRP regulates axon branching. This reduction in complexity was specific to three splice forms—the full‐length splice form 1, the most highly expressed splice form 7, and splice form 9. A focused analysis of splice form 7 revealed that this regulation is independent of RNA binding. Instead this regulation is disrupted by mutations affecting phosphorylation of a conserved serine as well as by mutating the nuclear export sequence. Surprisingly, this mutation in the nuclear export sequence also led to increased localization to the distal axonal arbor. Together, these findings reveal domain‐specific functions of FMRP in the regulation of axonal complexity that may be controlled by differential expression of FMRP splice forms. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 738–752, 2017  相似文献   

7.
Lack of fragile X mental retardation protein (FMRP) causes fragile X syndrome, a common form of inherited mental retardation. FMRP is an RNA binding protein thought to be involved in translation efficiency and/or trafficking of certain mRNAs. Recently, a subset of mRNAs to which FMRP binds with high affinity has been identified. These FMRP-associated mRNAs contain an intramolecular G-quartet structure. In neurons, dendritic mRNAs are involved in local synthesis of proteins in response to synaptic activity, and this represents a mechanism for synaptic plasticity. To determine the role of FMRP in dendritic mRNA transport, we have generated a stably FMR1-enhanced green fluorescent protein (EGFP)-transfected PC12 cell line with an inducible expression system (Tet-On) for regulated expression of the FMRP-GFP fusion protein. After doxycycline induction, FMRP-GFP was localized in granules in the neurites of PC12 cells. By using time-lapse microscopy, the trafficking of FMRP-GFP granules into the neurites of living PC12 cells was demonstrated. Motile FMRP-GFP granules displayed two types of movements: oscillatory (bidirectional) and unidirectional anterograde. The average velocity of the granules was 0.19 micro m/s with a maximum speed of 0.71 micro m/s. In addition, we showed that the movement of FMRP-GFP labeled granules into the neurites was microtubule dependent. Colocalization studies further showed that the FMRP-GFP labeled granules also contained RNA, ribosomal subunits, kinesin heavy chain, and FXR1P molecules. This report is the first example of trafficking of RNA-containing granules with FMRP as a core constituent in living PC12 cells.  相似文献   

8.
Differential translation and fragile X syndrome   总被引:3,自引:0,他引:3  
  相似文献   

9.
脆性X综合征(fragile X syndrome,FXS)是最常见的遗传性认知障碍疾病,也是一种与自闭症谱系障碍(autism spectrum disorder,ASD)相关的严重的基因疾病.它主要是由于脆性X智力低下基因1(fragile X mental retardation 1,FMR1)的异常扩增及其上游Cp G岛的异常甲基化,导致其编码的脆性X智力低下蛋白(fragile X mental retardation protein,FMRP)表达减少或缺失引起的.FMRP与miRNA(micro RNA)均具有翻译抑制活性,而且FMRP在生物化学和遗传学上均与miRNA调控通路有相互作用.此外,越来越多的研究发现miRNA调控通路在FXS的发病和治疗中发挥作用.因此,本文对miRNA的功能及其与脆性X蛋白家族成员间的相互作用进行阐述,为在miRNA水平了解FXS的发病机制奠定基础.  相似文献   

10.
Glucocorticoids affect learning and memory but the cellular mechanisms involved are poorly understood. The present studies tested if the stress-responsive glucocorticoid receptor (GR) is present and regulated within dendritic spines, and influences local signaling to the actin cytoskeleton. In hippocampal field CA1, 13?% of synapses contained GR-immunoreactivity. Three-dimensional reconstructions of CA1 dendrites showed that GR aggregates are present in both spine heads and necks. Consonant with evidence that GR?? mRNA associates with the translation regulator Fragile X Mental Retardation Protein (FMRP), spine GR levels were rapidly increased by group 1 mGluR activation and reduced in mice lacking FMRP. Treatment of cultured hippocampal slices with the GR agonist dexamethasone rapidly (15?C30?min) increased total levels of phosphorylated (p) Cofilin and extracellular signal-regulated kinase (ERK) 1/2, proteins that regulate actin polymerization and stability. Dexamethasone treatment of adult hippocampal slices also increased numbers of PSD95+ spines containing pERK1/2, but reduced numbers of pCofilin-immunoreactive spines. Dexamethasone-induced increases in synaptic pERK1/2 were blocked by the GR antagonist RU-486. These results demonstrate that GRs are present in hippocampal spines where they mediate acute glucocorticoid effects on local spine signaling. Through effects on these actin regulatory pathways, GRs are positioned to exert acute effects on synaptic plasticity.  相似文献   

11.
Fragile X syndrome, the most common cause of inherited mental retardation, is caused by the absence of FMRP (Fragile X Mental Retardation Protein). FMRP is an RNA binding protein reported to be involved in translational control, notably at postsynaptic sites of protein synthesis as a part of a multiprotein/mRNA complex. One of the FMRP interactors, NUFIP1, is an RNA binding protein with an expression profile matching that of FMRP. We now show that in the nucleus NUFIP1 is localized in the nuclear matrix in RNA-containing structures lying in the proximity of, but not overlapping with, sites of nascent RNA. NUFIP1 is also present in the cytoplasm, where it is associated with ribosomes, similarly to FMRP. In neurons NUFIP1 can be detected in functional synaptoneurosomes, colocalizing with ribosomes. Consistent with its subcellular localization in both nucleus and cytoplasm, we show that NUFIP1 contains a functional CRM1-dependent nuclear export signal and is able to shuttle between these two cellular compartments. These findings suggest the involvement of NUFIP1 in the export and localization of mRNA and, in association with FMRP, in the regulation of local protein synthesis near synapses.  相似文献   

12.
Fragile X syndrome (FXS) is the most common form of inherited mental retardation and is caused by the loss of function for Fragile X Mental Retardation Protein (FMRP), a selective RNA-binding protein with a demonstrated role in the localized translation of target mRNAs at synapses. Several recent studies provide compelling evidence for a new role of FMRP in the development of the nervous system, during neurogenesis. Using a multi-faceted approach and a variety of model systems ranging from cultured neurospheres and progenitor cells to in vivo Drosophila and mouse models these reports indicate that FMRP is required for neural stem and progenitor cell proliferation, differentiation, survival, as well as regulation of gene expression. Here we compare and contrast these recent reports and discuss the implications of FMRP's new role in embryonic and adult neurogenesis, including the development of novel therapeutic approaches to FXS and related neurological disorders such as autism.  相似文献   

13.
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by the CGG trinucleotide expansion in the 3′-untranslated region of the FMR1 gene on the X chromosome, that silences the expression of the Fragile X mental retardation protein (FMRP). FMRP has been shown to bind to a G-rich region within the PSD-95 mRNA which encodes for the postsynaptic density protein 95 (PSD-95), and together with the microRNA miR-125a, to play an important role in the reversible inhibition of the PSD-95 mRNA translation in neurons. The loss of FMRP in Fmr1 KO mice disables this translation control in the production of the PSD-95 protein. Interestingly, the miR-125a binding site on PSD-95 mRNA is embedded in the G-rich region bound by FMRP and postulated to adopt one or more G quadruplex structures. In this study, we have used different biophysical techniques to validate and characterize the formation of parallel G quadruplex structures and binding of miR-125a to its complementary sequence located within the 3′ UTR of PSD-95 mRNA. Our results indicate that the PSD-95 mRNA G-rich region folds into alternate G quadruplex conformations that coexist in equilibrium. miR-125a forms a stable complex with PSD-95 mRNA, as evident by characteristic Watson–Crick base-pairing that coexists with one of the G quadruplex forms, suggesting a novel mechanism for G quadruplex structures to regulate the access of miR-125a to its binding site.  相似文献   

14.
Pre‐mutation CGG repeat expansions (55–200 CGG repeats; pre‐CGG) within the fragile‐X mental retardation 1 (FMR1) gene cause fragile‐X‐associated tremor/ataxia syndrome in humans. Defects in neuronal morphology, early migration, and electrophysiological activity have been described despite appreciable expression of fragile‐X mental retardation protein (FMRP) in a pre‐CGG knock‐in (KI) mouse model. The triggers that initiate and promote pre‐CGG neuronal dysfunction are not understood. The absence of FMRP in a Drosophila model of fragile‐X syndrome was shown to increase axonal transport of mitochondria. In this study, we show that dissociated hippocampal neuronal culture from pre‐CGG KI mice (average 170 CGG repeats) express 42.6% of the FMRP levels and 3.8‐fold higher Fmr1 mRNA than that measured in wild‐type neurons at 4 days in vitro. Pre‐CGG hippocampal neurons show abnormalities in the number, mobility, and metabolic function of mitochondria at this early stage of differentiation. Pre‐CGG hippocampal neurites contained significantly fewer mitochondria and greatly reduced mitochondria mobility. In addition, pre‐CGG neurons had higher rates of basal oxygen consumption and proton leak. We conclude that deficits in mitochondrial trafficking and metabolic function occur despite the presence of appreciable FMRP expression and may contribute to the early pathophysiology in pre‐CGG carriers and to the risk of developing clinical fragile‐X‐associated tremor/ataxia syndrome.  相似文献   

15.
Sunrise at the synapse: the FMRP mRNP shaping the synaptic interface   总被引:13,自引:0,他引:13  
Antar LN  Bassell GJ 《Neuron》2003,37(4):555-558
Recent studies provide new insight into the mechanistic function of Fragile X Mental Retardation Protein (FMRP), paving the way to understanding the biological basis of Fragile X Syndrome. While it has been known for several years that there are spine defects associated with the absence of the mRNA binding protein FMRP, it has been unclear how its absence may lead to specific synaptic defects that underlie the learning and cognitive impairments in Fragile X. One hypothesis under study is that FMRP may play a key role in the regulation of dendritically localized mRNAs, at subsynaptic sites where regulation of local protein synthesis may influence synaptic structure and plasticity. This review highlights recent progress to identify the specific mRNA targets of FMRP and assess defects in mRNA regulation that occur in cells lacking FMRP. In addition, exciting new studies on Fmr1 knockout mice and mutant flies have begun to elucidate a key role for FMRP in synaptic growth, structure, and long-term plasticity.  相似文献   

16.
Loss of Fragile X mental retardation protein (FMRP) function causes the highly prevalent Fragile X syndrome [1 and 2]. Identifying targets for the RNA binding FMRP is a major challenge and an important goal of research into the pathology of the disease. Perturbations in neuronal development and circadian behavior are seen in Drosophila dfmr1 mutants. Here we show that regulation of the actin cytoskeleton is under dFMRP control. dFMRP binds the mRNA of the Drosophila profilin homolog and negatively regulates Profilin protein expression. An increase in Profilin mimics the phenotype of dfmr1 mutants. Conversely, decreasing Profilin levels suppresses dfmr1 phenotypes. These data place a new emphasis on actin misregulation as a major problem in fmr1 mutant neurons.  相似文献   

17.
脆性X综合征(fragile X syndrome, FXS)是最常见的遗传性智力障碍疾病,主要是由于X染色体上脆性X智力低下基因1(fragile X-mental retardation gene 1, FMR1)5’端非翻译区CGG三核苷酸的重复扩增及其相邻部位CpG岛的异常甲基化而导致其编码产物脆性X智力低下蛋白(fragile X mental retardation protein, FMRP)的缺失引起。目前,基因诊断已成为FXS诊断的金标准,但临床治疗仍缺乏特异性。本文首先介绍了FMRP的结构与功能,剖析了FXS的致病机制,然后阐述了FXS中与FMRP表达相关的信号转导途径,深入探讨并总结了靶向干预FXS中信号通路、基因编辑逆转FMR1沉默以及靶向降解FXS异常表达蛋白的治疗策略。  相似文献   

18.
Bassell GJ  Warren ST 《Neuron》2008,60(2):201-214
Fragile X syndrome is the most common inherited form of cognitive deficiency in humans and perhaps the best-understood single cause of autism. A trinucleotide repeat expansion, inactivating the X-linked FMR1 gene, leads to the absence of the fragile X mental retardation protein. FMRP is a selective RNA-binding protein that regulates the local translation of a subset of mRNAs at synapses in response to activation of Gp1 metabotropic glutamate receptors (mGluRs) and possibly other receptors. In the absence of FMRP, excess and dysregulated mRNA translation leads to altered synaptic function and loss of protein synthesis-dependent plasticity. Recent evidence indicates the role of FMRP in regulated mRNA transport in dendrites. New studies also suggest a possible local function of FMRP in axons that may be important for guidance, synaptic development, and formation of neural circuits. The understanding of FMRP function at synapses has led to rationale therapeutic approaches.  相似文献   

19.
Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS.  相似文献   

20.
The (CGG)n-repeat in the 5′-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%–90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号