首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Endospores of Bacillus subtilis are encased in a thick, proteinaceous shell known as the coat, which is composed of a large number of different proteins. Here we report the identification of three previously uncharacterized coat-associated proteins, YabP, YheD, and YutH, and their patterns of subcellular localization during the process of sporulation, obtained by using fusions of the proteins to the green fluorescent protein (GFP). YabP-GFP was found to form both a shell and a ring around the center of the forespore across the short axis of the sporangium. YheD-GFP, in contrast, formed two rings around the forespore that were offset from its midpoint, before it eventually redistributed to form a shell around the developing spore. Finally, YutH-GFP initially localized to a focus at one end of the forespore, which then underwent transformation into a ring that was located adjacent to the forespore. Next, the ring became a cap at the mother cell pole of the forespore that eventually spread around the entire developing spore. Thus, each protein exhibited its own distinct pattern of subcellular localization during the course of coat morphogenesis. We concluded that spore coat assembly is a dynamic process involving diverse patterns of protein assembly and localization.  相似文献   

3.
4.
During the process of spore formation in Bacillus subtilis many membrane proteins localize to the sporulation septum where they play key roles in morphogenesis and cell-cell signalling. However, the mechanism by which these proteins are anchored at this site is not understood. In this report we have defined the localization requirements for the mother-cell membrane protein SpoIVFA, which anchors a signalling complex in the septal membrane on the mother cell side. We have identified five proteins (SpoIID, SpoIIP, SpoIIM, BofA and SpoIIIAH) synthesized in the mother cell under the control of sigma(E) and one protein (SpoIIQ) synthesized in the forespore under the control of sigma(F) that are all required for the proper localization of SpoIVFA. Surprisingly, these proteins appear to have complementary and overlapping anchoring roles suggesting that SpoIVFA is localized in the septal membrane through a web of protein interactions. Furthermore, we demonstrate a direct biochemical interaction between the extracellular domains of two of the proteins required to anchor SpoIVFA: the forespore protein SpoIIQ and the mother-cell protein SpoIIIAH. This result supports the idea that the web of interactions that anchors SpoIVFA is itself held in the septal membrane through a zipper-like interaction across the sporulation septum. Importantly, our results suggest that a second mechanism independent of forespore proteins participates in anchoring SpoIVFA. Finally, we show that the dynamic localization of SpoIIQ in the forespore is impaired in the absence of SpoIVFA but not SpoIIIAH. Thus, a complex web of interactions among mother cell and forespore proteins is responsible for static and dynamic protein localization in both compartments of the sporangium. We envision that this proposed network is involved in anchoring other sporulation proteins in the septum and that protein networks with overlapping anchoring capacity is a feature of protein localization in all bacteria.  相似文献   

5.
The spoVM gene encodes a 26-amino-acid polypeptide that is essential for spore formation in Bacillus subtilis. A transposon insertion within the spoVM open reading frame has been shown to encode a chimeric protein which is biologically inactive and produces a phenotype identical to that of a deletion and insertion mutation. A genetic approach was used to identify possible interacting proteins, and the membrane-bound FtsH protease was identified. Mutations in ftsH suppressed the sporulation defect of certain spoVM mutants but not others. However, production of the mother cell sigma factors, sigmaE and sigmaK, was abnormal in the suppressed strains, and mutations in either spoVM or ftsH alone impaired sigma factor production and sporulation gene expression. Using FtsH purified from Escherichia coli, we demonstrated that in vitro (i) SpoVM inhibits FtsH protease activity and (ii) SpoVM is a substrate for the FtsH protease. We propose that during sporulation, SpoVM serves as a competitive inhibitor of FtsH activity. This interaction appears to be important for completion of the prespore engulfment step of sporulation, based on the phenotype of certain spoVM ftsH double mutants.  相似文献   

6.
7.
We have adapted immunofluorescence microscopy for use in Bacillus subtilis and have employed this procedure for visualizing cell-specific gene expression at early to intermediate stages of sporulation. Sporangia were doubly stained with propidium iodide to visualize the forespore and mother cell nucleoids and with fluorescein-conjugated antibodies to visualize the location of beta-galactosidase produced under the control of the sporulation RNA polymerase sigma factors sigma E and sigma F. In confirmation and extension of earlier reports, we found that expression of a lacZ fusion under the control of sigma E was confined to the mother cell compartment of sporangia at the septation (II) and engulfment (III) stages of morphogenesis. Conversely, sigma F-directed gene expression was confined to the forespore compartment of sporangia at postseptation stages of development. Little indication was found for sigma E- or sigma F-directed gene expression prior to septation or in both compartments of postseptation sporangia. Gene expression under the control of the forespore sigma factor sigma G also exhibited a high level of compartmentalization. A high proportion of sporangia exhibited fluorescence in our immunostaining protocol, which should be suitable for the subcellular localization of sporulation proteins for which specific antibodies are available.  相似文献   

8.
A large number of proteins are known to reside at specific subcellular locations in bacterial cells. However, the molecular mechanisms by which many of these proteins are anchored at these locations remains unclear. During endospore formation in Bacillus subtilis, several integral membrane proteins are located specifically at the interface of the two adjacent cells of the developing sporangium, the mother cell and forespore. The mother cell membrane protein SpoIIIAH recognizes the cell-cell interface through an interaction with the forespore membrane protein SpoIIQ, and then the other proteins are positioned there by the SpoIIIAH-SpoIIQ complex. In this study, we investigated the molecular mechanisms underlying the formation of the SpoIIIAH-SpoIIQ complex. Using gel filtration chromatography and isothermal titration calorimetry, we measured the binding parameters that characterize the SpoIIIAH-SpoIIQ interaction in vitro. We also demonstrated that the interaction of SpoIIIAH and SpoIIQ is governed by their YscJ and degenerate LytM domains, respectively. Therefore, the LytM domain of SpoIIQ provides the positional cue that dictates the localization of mother cell membrane proteins to the mother cell-forespore interface.  相似文献   

9.
Spore formation in Bacillus subtilis involves the formation of a thick, proteinaceous shell or coat that is assembled around a specialized membrane known as the outer forespore membrane. Here we present evidence that the assembling coat is tethered to the outer forespore membrane by a 26-amino-acid peptide called SpoVM, which is believed to form an amphipathic helix. We show that proper localization of SpoVM is dependent on SpolVA, a morphogenetic protein that forms the basement layer of the spore coat, and conversely, that proper localization of SpoIVA is dependent on SpoVM. Genetic, biochemical and cytological evidence indicates that this mutual dependence is mediated in part by contact between an amino acid side-chain located near the extreme C-terminus of SpoIVA and an amino acid side-chain on the hydrophilic face of the SpoVM helix. Evidence is also presented that SpoVM adheres to the outer forespore membrane via hydrophobic, amino acid side-chains on the hydrophobic face of the helix. The results suggest that the SpoVM helix is oriented parallel to the membrane with the hydrophobic face buried in the lipid bilayer.  相似文献   

10.
Sporulating Bacillus subtilis cells assemble a transenvelope secretion complex that connects the mother cell and developing spore. The forespore protein SpoIIQ and the mother‐cell protein SpoIIIAH interact across the double membrane septum and are thought to assemble into a channel that serves as the basement layer of this specialized secretion system. SpoIIQ is absolutely required to recruit SpoIIIAH to the sporulation septum on the mother‐cell side, however the mechanism by which SpoIIQ is localized has been unclear. Here, we show that SpoIIQ localization requires its partner protein SpoIIIAH and degradation of the septal peptidoglycan (PG) by the two cell wall hydrolases SpoIID and SpoIIP. Our data suggest that PG degradation enables a second mother‐cell‐produced protein to interact with SpoIIQ. Cells in which both mother‐cell anchoring mechanisms have been disabled have a synergistic sporulation defect suggesting that both localization factors function in the secretion complex. Finally, we show that septal PG degradation is critical for the assembly of an active complex. Altogether, these results suggest that the specialized secretion system that links the mother cell and forespore has a complexity approaching those found in Gram‐negative bacteria and reveal that the sporulating cell must overcome similar challenges in assembling a transenvelope complex.  相似文献   

11.
12.
13.
Sporulating Bacillus subtilis cells assemble a multimeric membrane complex connecting the mother cell and developing spore that is required to maintain forespore differentiation. An early step in the assembly of this transenvelope complex (called the A–Q complex) is an interaction between the extracellular domains of the forespore membrane protein SpoIIQ and the mother cell membrane protein SpoIIIAH. This interaction provides a platform onto which the remaining components of the complex assemble and also functions as an anchor for cell–cell signalling and morphogenetic proteins involved in spore development. SpoIIQ is required to recruit SpoIIIAH to the sporulation septum on the mother cell side; however, the mechanism by which SpoIIQ specifically localizes to the septal membranes on the forespore side has remained enigmatic. Here, we identify GerM, a lipoprotein previously implicated in spore germination, as the missing factor required for SpoIIQ localization. Our data indicate that GerM and SpoIIIAH, derived from the mother cell, and SpoIIQ, from the forespore, have reciprocal localization dependencies suggesting they constitute a tripartite platform for the assembly of the A–Q complex and a hub for the localization of mother cell and forespore proteins.  相似文献   

14.
K Smith  P Youngman 《Biochimie》1992,74(7-8):705-711
The product of the spoIIM gene of Bacillus subtilis is required for complete septum migration and forespore engulfment during sporulation. To investigate whether expression of spoIIM is required in the forespore compartment of the sporangium, we have constructed a new integrational vector, pKSV7, which contains temperature-sensitive replication functions derived from pE194ts. The presence of the conditionally defective replication origin greatly stimulates plasmid excision when sporulation occurs at the permissive temperature. This facilitates the use of a genetic technique employed by Illing et al to distinguish genes whose expression must occur in the forespore from genes that may be expressed exclusively in the mother cell compartment. The results of the integration/excision experiments using pKSV7 support the conclusion that spoIIM must be expressed in the forespore. Biochemical analysis of forespore and mother cell fractions suggests that spoIIM is also expressed in the mother cell. The conditional integrational vector pKSV7 replicates at high copy number in E coli and allows the identification of inserts in the polylinker cluster by disruption of alpha-complementation and thus should be useful for other kinds of genetic manipulations in B subtilis.  相似文献   

15.
16.
Many bacterial proteins involved in fundamental processes such as cell shape maintenance, cell cycle regulation, differentiation, division and motility localize dynamically to specific subcellular regions. However, the mechanisms underlying dynamic protein localization are incompletely understood. Using the SpoIIQ protein in Bacillus subtilis as a case study, two reports present important novel insights into how a protein finds its right place at the right time and remains stably bound. During sporulation, SpoIIQ localizes in clusters in the forespore membrane at the interface that separates the forespore and mother cell and functions as a landmark protein for SpoIIIAH in the mother cell membrane. The extracellular domains of SpoIIQ and SpoIIIAH interact directly effectively bridging the gap between the two membranes. Here, SpoIIQ localization is shown to depend on two pathways, one involves SpoIIIAH, the second involves two peptidoglycan‐degrading enzymes SpoIIP and SpoIID; and, SpoIIQ is only delocalized in the absence of all three proteins. Importantly, in the absence of SpoIIIAH, SpoIIQ apparently localizes normally. However, FRAP experiments demonstrated that SpoIIQ is not stably maintained in the clusters in this mutant. Thus, a second targeting pathway can mask significant changes in the localization of a protein.  相似文献   

17.
18.
Sharp MD  Pogliano K 《The EMBO journal》2002,21(22):6267-6274
During Bacillus subtilis sporulation, the SpoIIIE DNA translocase moves a trapped chromosome across the sporulation septum into the forespore. The direction of DNA translocation is controlled by the specific assembly of SpoIIIE in the mother cell and subsequent export of DNA into the forespore. We present evidence that the MinCD heterodimer, which spatially regulates cell division during vegetative growth, serves as a forespore-specific inhibitor of SpoIIIE assembly. The deletion of minCD increases the ability of forespore-expressed SpoIIIE to assemble and translocate DNA, and causes otherwise wild-type cells to reverse the direction of DNA transfer, producing anucleate forespores. We propose that two distinct mechanisms ensure the specific assembly of SpoIIIE in the mother cell, the partitioning of more SpoIIIE molecules into the larger mother cell by asymmetric cell division and the MinCD-dependent repression of SpoIIIE assembly in the forespore. Our results suggest that the ability of MinCD to sense positional information is utilized during sporulation to regulate protein assembly differentially on the two faces of the sporulation septum.  相似文献   

19.
During spore formation in Bacillus subtilis, sigma(E)-directed gene expression in the mother-cell compartment of the sporangium triggers the activation of sigma(G) in the forespore by a pathway of intercellular signalling that is composed of multiple proteins of unknown function. Here, we confirm that the vegetative protein SpoIIIJ, the forespore protein SpoIIQ and eight membrane proteins (SpoIIIAA through SpoIIIAH) produced in the mother cell under the control of sigma(E) are ordinarily required for intercellular signalling. In contrast, an anti-sigma(G) factor previously implicated in the pathway is shown to be dispensable. We also present evidence suggesting that SpoIIIJ is a membrane protein translocase that facilitates the insertion of SpoIIIAE into the membrane. In addition, we report the isolation of a mutation that partially bypasses the requirement for SpoIIIJ and for SpoIIIAA through SpoIIIAG, but not for SpoIIIAH or SpoIIQ, in the activation of sigma(G). We therefore propose that under certain genetic conditions, SpoIIIAH and SpoIIQ can constitute a minimal pathway for the activation of sigma(G). Finally, based on the similarity of SpoIIIAH to a component of type III secretion systems, we speculate that signalling is mediated by a channel that links the mother cell to the forespore.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号