首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Minina VI  Druzhinin VG 《Genetika》2004,40(12):1702-1708
Genomic dosage (copy number) of active ribosomal genes was evaluated using visual semi-quantitative method determining the sizes of Ag-NORs in acrocentric chromosomes after selective silver nitrate staining. A relationship between the length of service and the active ribosomal gene copy number was established: the highest numbers of active rRNA genes were observed in coke-oven workers with a length of service exceeding 20 years. An inverse relationship between the individual doses of active ribosomal genes and toxicogenetic susceptibility of the workers to the occupational factors was also revealed.  相似文献   

2.
3.
Completion of human genome reading stimulated intense studies in the field of functional genomics and characterization of individual genomes. Of considerable importance is the study of the complex of multicopy ribosomal genes (RGs), but its thorough analysis was not a task of the “Human Genome” program. In this short review we present our data on the copy number of rRNA genes in individual human genomes and on their heterogeneity in the functional respect. Fractions of active and potentially active RGs as well as fractions of inactive and silent RGs intensively methylated in the transcribed region are characterized. Their location in the nucleolus structures and in metaphase chromosomes is discussed.  相似文献   

4.
M E Delany  A B Krupkin 《Génome》1999,42(1):60-71
The molecular organization of the 18S, 5.8S, and 28S ribosomal RNA gene repeat units, located at the single nucleolus organizer region (NOR) locus in the chicken, was investigated in genetically distinct populations of research and commercial chickens. Substantial gene repeat variation within and among NORs was documented. Intact ribosomal gene repeat size ranged from 11 kb to over 50 kb. Unique combinations of ribosomal genes, of different size, were specific to particular populations. It was determined that the basis for the ribosomal gene repeat size variation was intergenic spacer (IGS) length heterogeneity. Interestingly, in different populations, the location of the variation that contributes to length heterogeneity was specific to particular IGS subregions. In addition to IGS variation, an inbred line of Red Jungle Fowl exhibited coding region variation. Ribosomal gene copy number variation was also studied, and line averages ranged from 279 to 368. Average rDNA array size (a function of copy number and gene repeat length) was calculated for each of the populations and found to vary over a range of two megabases, from 5 to 7 Mb.  相似文献   

5.
A modified version of quantitating repetitive sequences in genomic DNA was developed to allow comparisons for numerous individual genomes and simultaneous analysis of several sequences in each DNA specimen. The relative genomic content of ribosomal repeats (rDNA) was estimated for 75 individuals, including 33 healthy donors (HD) and 42 schizophrenic patients (SP). The rDNA copy number in HD was 427 ± 18 (mean ± SE) per diploid nucleus, ranging 250–600. In SP, the rDNA copy number was 494 ± 15 and ranged 280–670, being significantly higher than in HD. The two samples did not differ in contents of sequences hybridizing with probes directed to a subfraction of human satellite III or to the histone genes. Cytogenetic analysis (silver staining of metaphase chromosomes) showed that the content of active rRNA genes in nucleolus organizer regions is higher in SP compared with HD. The possible causes of the elevated rRNA gene dosage in SP were considered. The method employed was proposed for studying the polymorphism for genomic content of various repeats in higher organisms, including humans.  相似文献   

6.
Summary We have compared copy numbers and blothybridization patterns of histone genes (H3 plus H4) between and within individuals of broad bean (Vicia faba). Copy number differences among individuals in the population of 200 individuals were as great as 27 fold, and as much as 3.2 fold among separate leaves of the same plant. Among F2 progeny from genetic crosses, up to a 5.4-fold range was seen (mean=3.5 fold), and among F1 progeny of self-pollinated plants, up to a 5.9-fold range was observed (mean=2.3 fold). Histone gene blot-hybridization patterns for EcoRI and HindIII were also variable among individuals and indicated that the genes are probably clustered in only a few chromosomal loci. The degree of variation in histone gene copy number per haploid genome (2–55 copies, or 27 fold) was similar to that found previously for ribosomal RNA genes (230–22000, or 95 fold) of V. faba. However, the two gene families change independently, since individuals with a high or low copy number for one gene can have either a high or low copy number for the other. The mechanisms(s) for rapid gene copy number change may be similar for these gene families.  相似文献   

7.
The nucleolus in primary spermatocytes of Drosophila hydei   总被引:8,自引:2,他引:8  
  相似文献   

8.
Gene copy number polymorphism was studied in a population of the arbuscular mycorrhizal fungus Glomus intraradices by using a quantitative PCR approach on four different genomic regions. Variation in gene copy number was found for a pseudogene and for three ribosomal genes, providing conclusive evidence for a widespread occurrence of macromutational events in the population.  相似文献   

9.
《Genomics》2022,114(4):110430
Ribosomal DNA genes (rDNA) encode the major ribosomal RNAs and in eukaryotes typically form tandem repeat arrays. Species have characteristic rDNA copy numbers, but there is substantial intra-species variation in copy number that results from frequent rDNA recombination. Copy number differences can have phenotypic consequences, however difficulties in quantifying copy number mean we lack a comprehensive understanding of how copy number evolves and the consequences. Here we present a genomic sequence read approach to estimate rDNA copy number based on modal coverage to help overcome limitations with existing mean coverage-based approaches. We validated our method using Saccharomyces cerevisiae strains with known rDNA copy numbers. Application of our pipeline to a global sample of S. cerevisiae isolates showed that different populations have different rDNA copy numbers. Our results demonstrate the utility of the modal coverage method, and highlight the high level of rDNA copy number variation within and between populations.  相似文献   

10.
The organization of the ribosomal RNA genes was examined in several species of Vicia in an attempt to determine whether a relationship exists between genome size and ribosomal repeat length. Species within this genus exhibit a sevenfold variation in haploid DNA content. Our data suggest that species with an intermediate genome size maintain one predominant Eco RI class of ribosomal repeat of about 9 kilobases (kb). In contrast, the smallest and largest genomes of Vicia possess one major and several minor classes. The possible relationship between repeat classes among species is discussed. We examined the species with the smallest (V. villosa) and largest (V. faba) genomes in closer detail by R-loop analysis of a satellite DNA from Hoechst 33258 dye-CsCl gradients. Heterogeneity was found in the length of the ribosomal repeat for both species, but no appreciable difference was observed in the distribution of these lengths, which averaged 11–12 kb. This heterogeneity is associated with the nontranscribed spacer region. Intervening sequences were not found in either the 25S or 18S coding regions of the ribosomal repeat of either of these two plants. A putative ribosomal RNA precursor of 7 kb was identified for both species.  相似文献   

11.
Gene copy number polymorphism was studied in a population of the arbuscular mycorrhizal fungus Glomus intraradices by using a quantitative PCR approach on four different genomic regions. Variation in gene copy number was found for a pseudogene and for three ribosomal genes, providing conclusive evidence for a widespread occurrence of macromutational events in the population.  相似文献   

12.
The ribosomal rDNA gene array is an epigenetically-regulated repeated gene locus. While rDNA copy number varies widely between and within species, the functional consequences of subtle copy number polymorphisms have been largely unknown. Deletions in the Drosophila Y-linked rDNA modifies heterochromatin-induced position effect variegation (PEV), but it has been unknown if the euchromatic component of the genome is affected by rDNA copy number. Polymorphisms of naturally occurring Y chromosomes affect both euchromatin and heterochromatin, although the elements responsible for these effects are unknown. Here we show that copy number of the Y-linked rDNA array is a source of genome-wide variation in gene expression. Induced deletions in the rDNA affect the expression of hundreds to thousands of euchromatic genes throughout the genome of males and females. Although the affected genes are not physically clustered, we observed functional enrichments for genes whose protein products are located in the mitochondria and are involved in electron transport. The affected genes significantly overlap with genes affected by natural polymorphisms on Y chromosomes, suggesting that polymorphic rDNA copy number is an important determinant of gene expression diversity in natural populations. Altogether, our results indicate that subtle changes to rDNA copy number between individuals may contribute to biologically relevant phenotypic variation.  相似文献   

13.
14.
The first full-length cDNA library for lichenized fungi was constructed from cultured mycobiont of the arid desert lichen Endocarpon pusillum. Based on small-scale sequencing results, 111 genes of the lichenized fungi were identified for the first time, among which 11 genes shared no homology with any known fungal genes. Real-time PCR showed that the size of the mycobiont genome is 39.13 Mb and the copy number of ribosomal RNA gene repeat units is 43. The results of this study will be valuable for the ongoing lichen genome-sequencing project and the large-scale identification of functional genes from lichenized fungi.  相似文献   

15.
Cucurbitaceae are characterized by a high copy number for nuclear ribosomal RNA genes. We have investigated the genomic ribosomal DNA (rDNA) of four closely related species of this family with respect to structure, length heterogeneity, and evolution. InCucumis melo (melon) there are two main length variants of rDNA repeats with 10.7 and 10.55kb.Cucumis sativus (cucumber) shows at least three repeat types with 11.5, 10.5, and 10.2kb.Cucurbita pepo (zucchini) has two different repeat types with 10.0 and 9.3kb. There are also two different repeat types inCucurbita maxima (pumpkin) of about 11.2 and 10.5kb. Restriction enzyme mapping of the genomic rDNA of these four plants and of cloned repeats ofC. sativus shows further heterogeneities which are due to methylation or point mutations. By comparison of the restriction enzyme maps it was possible to trace some evolutionary events in the family ofCucurbitaceae. Some aspects of regulation and function of the middle repetitive rRNA genes (here between 2000 and 10000 copies) are discussed.  相似文献   

16.
Mitotic disjunction of the repetitive ribosomal DNA (rDNA) involves specialized segregation mechanisms dependent on the conserved phosphatase Cdc14. The reason behind this requirement is unknown. We show that rDNA segregation requires Cdc14 partly because of its physical length but most importantly because a fraction of ribosomal RNA (rRNA) genes are transcribed at very high rates. We show that cells cannot segregate rDNA without Cdc14 unless they undergo genetic rearrangements that reduce rDNA copy number. We then demonstrate that cells with normal length rDNA arrays can segregate rDNA in the absence of Cdc14 as long as rRNA genes are not transcribed. In addition, our study uncovers an unexpected role for the replication barrier protein Fob1 in rDNA segregation that is independent of Cdc14. These findings demonstrate that highly transcribed loci can cause chromosome nondisjunction.  相似文献   

17.
The complete mitochondrial (mt) genome of the ark shell Scapharca broughtonii was determined using long PCR and a genome walking sequencing strategy with genus-specific primers. The S. broughtonii mt genome (GenBank accession number AB729113) contained 12 protein-coding genes (the atp8 gene is missing, as in most bivalves), 2 ribosomal RNA genes, and 42 transfer tRNA genes, in a length of 46,985 nucleotides for the size of mtDNA with only one copy of the heteroplasmic tandem repeat (HTR) unit. Moreover the S. broughtonii mt genome shows size variation; these genomes ranged in size from about 47 kb to about 50 kb because of variation in the number of repeat sequences in the non-coding region. The mt-genome of S. broughtonii is, to date, the longest reported metazoan mtDNA sequence. Sequence duplication in non-coding region and the formation of HTR arrays were two of the factors responsible for the ultra-large size of this mt genome. All the tRNA genes were found within the S. broughtonii mt genome, unlike the other bivalves usually lacking one or more tRNA genes. Twelve additional specimens were used to analyze the patterns of tandem repeat arrays by PCR amplification and agarose electrophoresis. Each of the 12 specimens displayed extensive heteroplasmy and had 8–10 length variants. The motifs of the HTR arrays are about 353–362 bp and the number of repeats ranges from 1 to 11.  相似文献   

18.
19.
Many autonomously replicating genetic elements exist as multiple copies within the cell. The copy number of these elements is often assumed to have important fitness consequences for both element and host, yet the forces shaping its evolution are not well understood. The 2 μm is a multicopy plasmid of Saccharomyces yeasts, encoding just four genes that are solely involved in plasmid replication. One simple model for the fitness relationship between yeasts and 2 μm is that plasmid copy number evolves as a trade‐off between selection for increased vertical transmission, favouring high copy number, and selection for decreased virulence, favouring low copy number. To test this model, we experimentally manipulated the copy number of the plasmid and directly measured the fitness cost, in terms of growth rate reduction, associated with high plasmid copy number. We find that the fitness burden imposed by the 2 μm increases with plasmid copy number, such that each copy imposes a fitness burden of 0.17% (± 0.008%), greatly exceeding the cost expected for it to be stably maintained in yeast populations. Our results demonstrate the crucial importance of copy number in the evolution of yeast per 2 μm associations and pave the way for future studies examining how selection can shape the cost of multicopy elements.  相似文献   

20.
Data on molecular analysis of the insertion sites of nine random copies of burdock retrotransposon are presented. The 12-bp consensus sequence of the insertion sites, YNNUTUTUYAYA (Y-pyrimidine; U-purine), was determined. Homology between the burdock sequence and ribosomal genes was revealed. Three copies of this element were located within the region of ribosomal repeats: one copy in the 18S RNA gene, and two copies in the same intergenic spacer region, in the so-called Alu-repeats of Drosophila, in different copies of ribosomal genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号