首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantification of ellagic acid, the principal bioactive component of pomegranate leaf extract, in rats plasma following oral administration of pomegranate leaf extract was achieved by using a high-performance liquid chromatographic method. The calibration curve for ellagic acid was linear (r2=0.9998) ver the concentration range 0.026-1.3 microg/ml. The intra- and inter-day assays of ellagic acid from rat plasma were less than 6.52% at concentration range from 26 to 1300 ng/ml and good overall recoveries (94.5-102.4%) were found on same concentrations. The concentration-time profile was fitted with an open two-compartment system with lag time and its max concentration of ellagic acid in plasma was 213 ng/ml only 0.55 h after oral administration extract 0.8 g/kg. The pharmacokinetic profile indicates that ellagic acid has poor absorption and rapid elimination after oral administration pomegranate leaf extract, and part of it was absorbed from stomach.  相似文献   

2.
A column-switching high-performance liquid chromatography (HPLC) method for the determination of aloesin in rat plasma using column-switching and ultraviolet (UV) absorbance detection is described. Plasma was directly injected onto the HPLC system consisting of a clean-up column, a concentrating column, and an analytical column, which were connected with a six-port switching valve. The determination of aloesin was accurate and repeatable, with a limit of quantitation of 10 ng/ml in plasma. The standard calibration curve for aloesin was linear (r=0.998) over the concentration range of 10–1000 ng/ml in rat plasma. The intra- and inter-day assay variabilities of aloesin ranged from 1.0 to 4.7% and 1.1 to 8.8%, respectively. This highly sensitive and simple method has been successfully applied to a pharmacokinetic study after oral administration of aloesin to rats.  相似文献   

3.
A sensitive, specific and stability-indicating high-performance liquid chromatographic (HPLC) assay, involving pre-column derivatization and solid-phase extraction (SPE), was developed and validated for the quantitation of busulfan (BU) in aqueous and plasma samples. The linearity of the assay was in the concentration ranges of 0.15–10 μg/ml and 0.15–3 μg/ml for aqueous and plasma samples, respectively. The within-day and between-day variations were 2.90 and 3.31%, respectively, for the aqueous samples, and 9.24 and 14.56%, respectively, for the plasma samples. The overall recovery, derivatization yield and SPE efficiency of BU from plasma samples were 82.03, 108.01 and 86.69%, respectively. Forced degraded samples, either in highly acidic, neutral or basic medium, produced no interfering peaks in the chromatogram. The reported assay requires only 0.2 ml of plasma for the analysis, and its sensitivity is 150 ng/ml by monitoring samples at a wavelength of 254 nm, sufficient to study the plasma pharmacokinetics of BU in rats after a clinically relevant oral dose. Moreover, the sensitivity of the assay can be significantly increased to 30 ng/ml by monitoring samples at a wavelength of 278 nm. The applications of the assay were demonstrated with BU solubility measurements in two aqueous systems and with plasma samples from a Sprague–Dawley rat for an in vivo pharmacokinetic study. In addition, the assay has been employed in the development of a patented intravenous formulation, and in evaluations of stability, preclinical pharmacokinetics in rats and dogs, and clinical phase I trial of the formulation. The assay is readily adaptable to clinical therapeutic drug monitoring.  相似文献   

4.
A rapid and sensitive high-performance liquid chromatographic (HPLC) assay has been developed to allow determination of total (i.e. bound and unbound) and free (i.e. unbound) topotecan (TPT) in mouse plasma in the presence and absence of anti-TPT antibodies. The chromatographic analysis was carried out using reversed-phase isocratic elution with a Nova-Pak C18 column (3.9 mm x 150 mm, 4 microm) protected by a Nova-Pak C18 guard column (3.9 mm x 20 mm, 4 microm), where 10 mM KH(2)PO(4)-methanol-triethylamine (72:26:2 (v/v/v), pH 3.5) was used as the mobile phase. Topotecan was quantified with fluorescence detection using an excitation wavelength of 361 nm and an emission wavelength of 527 nm. The retention time for the internal standard, acridine, and TPT were 7.4 and 9.0 min, respectively. The lower limit of quantitation (LOQ) for TPT was determined as 0.02 ng in mouse plasma and mouse plasma ultrafiltrate, corresponding to a concentration of 1 ng/ml in 20 microl mouse plasma. The assay was shown to be linear over a concentration range of 1-500 ng/ml. The recoveries of free and total TPT from spiked mouse plasma were within 10% of theoretical values (assessed at 1, 20 and 500 ng/ml). The validated HPLC assay was applied to evaluate TPT pharmacokinetics following administration of TPT to Swiss Webster mice and to hyperimmunized and control BALB/c mice. The assay has been shown to be capable for measuring total and free TPT in mouse plasma with high sensitivity and will allow the testing of the effect of anti-TPT antibodies on the disposition of TPT.  相似文献   

5.
A sensitive radioimmunoassay (RIA) for [D-Trp6]-luteinizing hormone-releasing hormone (LHRH) has been developed. This assay allowed measurement of the LHRH analog in unextracted plasma with a minimum detectable concentration of 10 pg/ml. Validation of plasma assays was performed through Sep-Pak and HPLC purification. The in vivo fate of the peptide was investigated in dogs after subcutaneous or intravenous injections. In both cases, the LHRH analog showed longer plasma half-life than native LHRH with an elimination half-life superior to 80 min. Long-acting formulations were tested in dogs and rats: the day following administration, [D-Trp6]-LHRH plasma level rose to 2.9-4.6 ng/ml in dogs and 0.8-3.8 ng/ml in rats. From day 4 to day 30, [D-Trp6]-LHRH plasma level followed a plateau with concentrations of 0.3-0.8 ng/ml in dogs and 0.2-0.4 ng/ml in rats. In parallel, testosterone plasma concentration was reduced to castrate level between day 4 and day 7 in dogs and was significantly lowered in rats. This sensitive [D-Trp6]-LHRH RIA will be particularly useful for the evaluation of long-acting formulations in patients with advanced prostate cancer.  相似文献   

6.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed for the determination of estramustine and its 17-keto metabolite in plasma. The assay involves extraction of the compounds into hexane from plasma buffered to pH 9.0, the residue obtained by evaporation of the hexane extract is dissolved in the mobile phase hexane—ethanol (92.5:7.5) with HPLC analysis performed on a 5-μm silica gel column using a fluorescence detector with excitation at 195 nm and emission at wavelengths greater than 250 nm. The overall recoveries and limits of sensitivity for estramustine and the 17-keto metabolite are 74.7% and 40 ng/ml of plasma and 85.1% and 50 ng/ml of plasma, respectively. The method was used to obtain plasma concentration—time profiles in three subjects with prostatic cancer following oral administration of a single 7 mg/kg dose of estramustine phosphate.  相似文献   

7.
Tubeimoside I is an important component isolated from Bolbostemma paniculatum. Tubeimoside I has been demonstrated to possess many pharmacological activities, including anti-inflammatory, antitumor, and antitumor-promoting effects. The purpose of the present study was to examine in vivo pharmacokinetics and bioavailability of tubeimoside I in rats by using a liquid chromatography coupled with mass spectrometry quantitative detection method (LC/MS). The plasma samples were deproteinated, evaporated and reconstituted in 100 microl methanol prior to analysis. The separation was performed by Waters Symmetry C18 reversed-phase column (3.5 microm, 150 mm x 2.1mm, Waters Inc., USA) and a SB-C18 guard column (5 microm, 20 mm x 4.0mm). The mobile phase was a mixture of acetonitrile and water containing 5 microM NaAc (60:40, v/v). The method was validated within the concentration range 20-5000 ng/ml, and the calibration curves were linear with correlation coefficients >0.999. The lowest limit of quantitation (LLOQ) for tubeimoside I was 20 ng/ml in 0.1 ml rat plasma. The intra-assay accuracy and precision ranged from 92.4 to 104.9% and from 5.8 to 10.5%, respectively, while inter-assay accuracy and precision ranged from 94.2 to 95.0% and from 5.1 to 8.8%, respectively. The method was further applied to assess pharmacokinetics and oral bioavailability of tubeimoside I after intravenous and oral administration to rats. The oral bioavailability of tubeimoside I is only 0.23%, which indicates that tubeimoside I has poor absorption or undergoes acid-induced degradation. Practical utility of this new LC/MS method was confirmed in pilot pharmacokinetic studies in rats following both intravenous and oral administration.  相似文献   

8.
A rapid, sensitive and selective high-performance liquid chromatographic (HPLC) assay was developed for the determination of cibenzoline (Cipralan TM) in human plasma and urine. The assay involves the extraction of the compound into benzene from plasma or urine buffered to pH 11 and HPLC analysis of the residue dissolved in acetonitrile---phosphate buffer (0.015 mol/1, pH 6.0) (80:20). A 10-μ ion-exchange (sulfonate) column was used with acetonitrile—phosphate buffer (0.015 mol/1, pH 6.0) (80:20) as the mobile phase. UV detection at 214 nm was used for quantitation with the di-p-methyl analogue of cibenzoline as the internal standard.The recovery of cibenzoline in the assay ranged from 60 to 70% and was validated in human plasma and urine in the concentration range of 10–1000 ng/ml and 50–5000 ng/ml, respectively. A normal-phase HPLC assay was developed for the determination of the imidazole metabolite of cibenzoline. The assays were applied to the determination of plasma and urine concentrations of cibenzoline and trace amounts of its imidazole metabolite following oral administration of cibenzoline succinate to two human subjects.  相似文献   

9.
A sensitive and efficient liquid chromatography-mass spectrometry method was developed and validated for the simultaneous determination of two active chromones (prim-O-glucosylcimifugin and 4'-O-D-glucosyl-5-O-methylvisamminol) from Saposhnikovia root in rat plasma and urine. The plasma or urine samples were prepared by protein precipitation. Chromatographic separation of the two active chromones from matrix interferences was achieved on an Angilent TC-C(18) column with a mobile phase consisted of methanol, water and 0.1% formic acid. Puerarin was added as the internal standard. The method was validated with the concentration range 1.0-100 ng/mL in rat plasma and 10-1000 ng/mL in urine for prim-O-glucosylcimifugin, 1.5-150 ng/mL in plasma and 15-1500 ng/mL in urine for 4'-O-D-glucosyl-5-O-methylvisamminol. The lower limit of quantitation (LLOQ) of prim-O-glucosylcimifugin and 4'-O-D-glucosyl-5-O-methylvisamminol was 1.0 and 1.5 ng/mL in plasma, 10 and 15 ng/mL in urine, respectively. The intra- and inter-day precision across three validation days over the entire concentration range was lower than 9.0% as terms of relative standard deviation (R.S.D.). Accuracy determined at three quality control concentrations (2.0, 25 and 75 ng/mL for prim-O-glucosylcimifugin; 3.0, 37.5 and 112.5 ng/mL for 4'-O-D-glucosyl-5-O-methylvisamminol) ranged from -1.9 to 3.9% as terms of relative error (R.E.). The LC-ESI-MS method was further applied to assess pharmacokinetics and urine excretion of the two chromones after oral administration of Fangfeng extract to rats. Practical utility of this new LC-MS method was confirmed in pilot pharmacokinetic studies in rats following oral administration.  相似文献   

10.
A reversed-phase high-performance liquid chromatographic (HPLC) method with ultraviolet (UV) detection was developed and validated for the quantification of 6-deoxy-6-demethyl-4-dedimethylamino-tetracycline (COL-3), a matrix metalloproteinase (MMPs) inhibitor, in rat serum. This simple, sensitive, rapid and reproducible assay involved a preliminary serum deproteinization by adding a mixture of acetonitrile-methanol-0.5 M oxalic acid (70:20:10 (v/v)), as the combined precipitant and metal blocking agent, into serum samples (2:1 (v/v)). An aliquot (20 microl) of the supernatant was injected into the HPLC system linked to a Waters XTerra RP(18) column (150 mm x 4.6 mm i.d., particle size 5 microm). The compound was eluted by a mixture of acetonitrile-methanol-0.01 M oxalic acid (40:10:50 (v/v), pH 2.00), as the mobile phase, and detected at the wavelength of 350 nm. The total running time was 10 min. The low and high concentration calibration curves were linear in the range of 50-1200 ng/ml and 1200-12,000 ng/ml, respectively. The intra- and inter-day coefficients of variation at three quality control concentrations of 100, 1200, and 12,000 ng/ml were all less than 6%, while the percent error ranged from -2.5 to 6.6%. The limit of quantitation (LOQ) for COL-3 in serum was 50 ng/ml. This assay was successfully employed to study the serum concentration-time profiles of COL-3 after its intravenous and oral administration in rats. The method with some minor modifications in sample pretreatment was also applicable to the determination of the concentrations of COL-3 in rat bile, urine and feces.  相似文献   

11.
A rapid and sensitive method for the simultaneous determination of paracetamol and guaifenesin in human plasma was developed and validated, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. After extracted from plasma samples by diethyl ether-dichloromethane (3:2, v/v), the analytes and internal standard osalmide were chromatographed on a C18 column. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method was linear in the concentration range of 0.05-20.0 microg/ml for paracetamol and 5.0-2000.0 ng/ml for guaifenesin. The intra- and inter-day precision was within 14% for both paracetamol and guaifenesin. The assay accuracy was within +/-2.4% for the analytes. This is the first assay method described for the simultaneous determination of paracetamol and guaifenesin in plasma using one chromatographic run. The method was successfully employed in a pharmacokinetic study after an oral administration of a multicomponent formulation, containing 650 mg paracetamol, 200 mg guaifenesin, 60 mg pseudoephedrine and 20 mg dextrorphan.  相似文献   

12.
A sensitive and selective method for the measurement of carbimide, the hydrolytic product of calcium carbimide, in plasma is described. The procedure involves extraction with ethyl acetate, derivatization with heptafluorobutyric anhydride and analysis by gas—liquid chromatography with electron-capture detection. The lower limit of sensitivity of the assay is 5.0 ng/ml carbimide in plasma. The overall accuracy of the procedure is 96.1% with a coefficient of variation not exceeding 8.7%. This assay has been used to investigate the time-course of plasma carbimide concentration in the rat following oral administration of calcium carbimide.  相似文献   

13.
A new simple and rapid liquid chromatographic-mass spectrometric technique was designed for the determination of nine benzodiazepines in plasma and oral fluid. Benzodiazepines were extracted from alkalinised spiked and clinical plasma and oral fluid samples using a single step, liquid-liquid extraction procedure with diethyl ether. The chromatographic separation was performed with a Xterra RP18, 5 microm (150 x 2.1 mm i.d.) reversed-phase column using deuterated analogues of the analytes as internal standard. The recovery ranged from 70.3 to 86.9% for plasma and 63.9 to 77.2% for oral fluid. The limits of detection ranged from 0.5 to 1 ng/ml in plasma and 0.1 to 0.2 ng/ml for oral fluid. The method was validated for all the compounds, including linearity and the main precision parameters. The procedure, showed to be sensitive and specific, was applied to real plasma and oral fluid samples. The method is especially useful to analyse saliva samples from drivers undergoing roadside drug controls.  相似文献   

14.
A method for the determination of sertraline in human plasma using gas chromatography-mass spectrometry (GC-MS), with the selected ion-monitoring (SIM) mode, was described. The following was used in this study: (1) single liquid-liquid extraction at alkaline pH after deproteinization of plasma protein and (2) perfluoroacylation with HFBA, which has higher sensitivity (about 10-fold) compared with previous reported derivatization. The detection limit for the SIM of sertraline as an N-HFB derivative was 0.1 ng/ml, and its recovery was 80-85%. The linear response was obtained in the range of 0.2-10.0 ng/ml with a correlation coefficient of 0.999. The coefficient of variation (C.V.%) was less than 12.1% in the 1-30 ng/ml, and less than 18.2% at 0.2 ng/ml, and the accuracy was less than 10% at all of the concentration range. These findings indicate that this assay method has adequate precision and accuracy to determine the amount of sertraline in human plasma. After pharmacokinetics was performed with this assay method following oral administration of sertraline hydrochloride in man, moment analysis revealed that pharmacokinetic parameters for sertraline (Cmax, 10.3 ng/ml; Tmax, 8.0 h; T(1/2) 28.6 h) were similar to previously reported results. These results indicate that this simple and sensitive assay method is readily applicable to the pharmacokinetic studies of sertraline.  相似文献   

15.
Atractylenolide III is a major active component in Atractylodes macrocephala. This paper describes a simple, rapid, specific and sensitive method for the quantification of atractylenolide III in rat plasma using a liquid-liquid extraction procedure followed by liquid chromatography mass spectrometric (LC-MS) analysis. A Kromasil 3.5 microm C(18) column (150 mm x 2.00 mm) was used as the analytical column. Linear detection responses were obtained for atractylenolide III concentration ranging from 5 to 500 ng L(-1). The precision and accuracy data, based on intra-day and inter-day variations over 5 days were within 10.29%. The lower limit of quantitation for atractylenolide III was 5 ng mL(-1), using 0.1 mL plasma for extraction and its recoveries were greater than 85% at the low, medium and high concentrations. The method has been successfully applied to a pharmacokinetic study in rats after an oral administration of atractylenolide III with a dose of 20.0 mg kg(-1). With the lower limits of quantification at 5 ng mL(-1) for atractylenolide III, this method was proved to be sensitive enough for the pharmacokinetics study of atractylenolide III.  相似文献   

16.
A sensitive rapid method for the simultaneous determination of four major active alkaloids (dehydrocavidine, coptisine, dehydroapocavidine, and tetradehydroscoulerine, in abbreviation thereafter called YHL-I, YHL-II, YHL-III, and YHL-IV, respectively) from a Chinese traditional medicine Corydalis saxicola Bunting. (Yanhuanglian) in rat plasma and urine was established and validated. The assay for these substances in plasma and urine was based on HPLC coupled with tandem mass spectrometry (MS/MS) detection using multiple reaction monitoring mode (MRM) with berberine and clenbuterol as internal standards. The plasma and urine sample were deproteinated by adding methanol prior to liquid chromatography where separation was performed on a Luna column (5 microm, 100 x 2.00 mm) and an Agilent Zorbax SB-C18 guard column (5 microm, 20 x 4 mm). The method was validated with the concentration range 1-1000 ng/mL in plasma and 10-1000 ng/mL in urine for the four test compounds, and the calibration curves were linear with correlation coefficients >0.999. The lowest limits of quantitation for all four substances were 1 ng/mL in 0.1 mL rat plasma and 10 ng/mL in 0.1 mL urine. The intra-assay accuracy and precision in plasma ranged from 88.1 to 115.7% and 1.4 to 10.8%, respectively, while inter-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV ranged from 96.2 to 113.2% and 0.4 to 16.9%, respectively. The intra-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV in rat urine ranged from 96.1 to 112.9% and 1.2 to 8.3%, respectively, while inter-assay accuracy and precision ranged from 95.0 to 106.8% and 2.2 to 10.3%, respectively. The method was further applied to assess pharmacokinetics and urine excretion of the four alkaloids after oral and intravenous administration to rats. Practical utility of this new LC-MS-MS method was confirmed in pilot pharmacokinetic studies in rats following both intravenous and oral administration.  相似文献   

17.
A simple and sensitive gas chromatographic method has been developed for the determination of timolol in plasma using electron-capture detection and propranolol as internal standard. Timolol was extracted using butyl chloride and derivatized using trifluoroacetic anhydride in butyl acetate. The lower detection limit for the assay was found to be 1 ng/ml from 1 ml of plasma. Extracted standards gave within-day precision of 12.55, 9.68 and 3.78% for 1, 20 and 100 ng/ml plasma samples, respectively. A recovery of at least 80% of timolol was found using the extraction method described. The assay was used in a randomized cross-over bioequivalence trial using an oral administration of 20 mg of timolol. Pharmacokinetic parameters compare favourably with other literature values.  相似文献   

18.
An HPLC method for determining quercetin in human plasma and urine is presented for application to the pharmacokinetic study of rutin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using kaempferol as an internal standard. Solid-phase extraction was performed on an Oasis HLB cartridge (>95% recovery). The HPLC assay was carried out using a Luna ODS-2 column (150 x 2.1 mm I.D., 5 microm particle size). The mobile phase was acetonitrile-10 mM ammonium acetate solution containing 0.3 mM EDTA-glacial acetic acid, 29:70:1 (v/v, pH 3.9) and 26:73:1 (v/v, pH 3.9) for the determination of plasma and urinary quercetin, respectively. The flow-rate was 0.3 ml/min and the detection wavelength was set at 370 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a concentration range of 4-700 ng/ml of quercetin in plasma and 20-1000 ng/ml of quercetin in urine. The lower limit of quantification was approximately 7 ng/ml of quercetin in plasma and approximately 35 ng/ml in urine. The detection limit (defined at a signal-to-noise ratio of about 3) was approximately 0.35 ng/ml in plasma and urine. A preliminary experiment to investigate the plasma concentration and urinary excretion of quercetin after oral administration of 200 mg of rutin to a healthy volunteer demonstrated that the present method was suitable for determining quercetin in human plasma and urine.  相似文献   

19.
A simple, sensitive and reliable method was developed to determine simultaneously the concentrations of thienorphine and its metabolite thienorphine glucuronide conjugate in rat plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The metabolite was identified by MS: thienorphine glucuronide conjugate. Sample preparation involved protein precipitation with methanol. Analytes were separated on Finnigan BetaBasic-18 column (150 mm x 2.1mm i.d., 5 microm) using methanol: water: formic acid (56:44:0.1, v/v/v) as mobile phase at a flow rate of 0.2 ml/min. The method had a linear calibration curve over the concentration range of 0.1-50 ng/ml for thienorphine and 2-1000 ng/ml for thienorphine glucuronide conjugate, respectively. LOQ of thienorphine and thienorphine glucuronide conjugate was 0.1 and 2 ng/ml, respectively. The intra- and inter-batch precisions were less than 12% and their recoveries were greater than 80%. Pharmacokinetic data of thienorphine and its metabolite thienorphine glucuronide conjugate obtained with this method following a single oral dose of 3mg/kg thienorphine to rats were also reported for the first time.  相似文献   

20.
A validated high-performance liquid chromatographic procedure employing ultraviolet detection for the analysis of diclofenac in human plasma is reported. The method is rapid and, coupled with column switching, leads to a sensitive, accurate and reproducible assay. The retention times of diclofenac and the internal standard (4′-methoxydiclofenac, CGP-4287) are 6.4 and 7.6 min, respectively. The peak height versus plasma concentration is linear over the range 5.0–2000 ng/ml with a detection limit below 2.5 ng/ml. The mean absolute recovery of diclofenac using the described assay is 96.5% (n = 24). The inter- and intra-day accuracy and precision are within 8.3% of the actual values for all concentrations investigated. Furthermore, this procedure is applied to assess the pharmacokinetics of a single 75-mg oral dose of diclofenac sodium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号