首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autotaxin, also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), is a secreted enzyme that has lysophospholipase D activity, which converts lysophosphatidylcholine to bioactive lysophosphatidic acid. Lysophosphatidic acid activates at least six G-protein coupled recpetors, which promote cell proliferation, survival, migration and muscle contraction. These physiological effects become dysfunctional in the pathology of cancer, fibrosis, and pain. To date, several autotaxin/ENPP2 inhibitors have been reported; however, none were able to completely and continuously inhibit autotaxin/ENPP2 in vivo. In this study, we report the discovery of a highly potent autotaxin/ENPP2 inhibitor, ONO-8430506, which decreased plasma lysophosphatidic acid formation.The IC50 values of ONO-8540506 for lysophospholipase D activity were 6.4–19 nM for recombinant autotaxin/ENPP2 proteins and 4.7–11.6 nM for plasma from various animal species. Plasma lysophosphatidic acid formation during 1-h incubation was almost completely inhibited by the addition of >300 nM of the compound to human plasma. In addition, when administered orally to rats at a dose of 30 mg/kg, the compound demonstrated good pharmacokinetics in rats and persistently inhibited plasma lysophosphatidic acid formation even at 24 h after administration.Smooth muscle contraction is a known to be promoted by lysophosphatidic acid. In this study, we showed that dosing rats with ONO-8430506 decreased intraurethral pressure accompanied by urethral relaxation. These findings demonstrate the potential of this autotaxin/ENPP2 inhibitor for the treatment of various diseases caused by lysophosphatidic acid, including urethral obstructive disease such as benign prostatic hyperplasia.  相似文献   

2.
3.
We purified human plasma lysophospholipase D that produces physiologically active lysophosphatidic acid and showed that it is a soluble form of autotaxin, an ecto-nucleotide pyrophosphatase/phosphodiesterase, originally found as a tumor cell motility-stimulating factor. Its lower K(m) value for a lysophosphatidylcholine than that for a synthetic substrate of nucleotide suggests that lysophosphatidylcholine is a more likely physiological substrate for autotaxin and that its predicted physiological and pathophysiological functions could be mediated by its activity to produce lysophosphate acid, an intercellular mediator. Recombinant autotaxin was found to have lysophospholipase D activity; its substrate specificity and metal ion requirement were the same as those of the purified plasma enzyme. The activity of lysophospholipase D for exogenous lysophosphatidylcholine in human serum was found to increase in normal pregnant women at the third trimester of pregnancy and to a higher extent in patients in threatened preterm delivery, suggesting its roles in induction of parturition.  相似文献   

4.
Autotaxin is a secreted enzyme that produces most of the extracellular lysophosphatidate from lysophosphatidylcholine, the most abundant phospholipid in blood plasma. Lysophosphatidate mediates many physiological and pathological processes by signaling through at least six G-protein coupled receptors to promote cell survival, proliferation and migration. The autotaxin/lysophosphatidate signaling axis is involved in wound healing and tissue remodeling, and it drives many chronic inflammatory conditions from fibrosis to colitis, asthma and cancer. In cancer, lysophosphatidate signaling promotes resistance to chemotherapy and radiotherapy, and increases both angiogenesis and metastasis. Research into autotaxin inhibitors is accelerating, both as primary and adjuvant therapy. Historically, autotaxin inhibitors had poor bioavailability profiles and thus had limited efficacy in vivo. This situation is now changing, especially since the recent crystal structure of autotaxin is now enabling rational inhibitor design. In this review, we will summarize current knowledge on autotaxin-mediated disease processes including cancer, and discuss recent advancements in the development of autotaxin-targeting strategies. We will also provide new insights into autotaxin as an inflammatory mediator in the tumor microenvironment that promotes cancer progression and therapy resistance.  相似文献   

5.
Divalent metals used to support phosphodiesterase (EC 3.1.4.-) activity have been found to influence the substrate and enzyme specificity of many phosphodiesterase inhibitors in studies of the hydrolysis of cyclic AMP and cyclic GMP by the calmodulin-dependent and cyclic AMP-specific phosphodiesterases from bovine heart. Many compounds displayed marked differences in substrate specificity and inhibitory potency in the presence of Mg2+, as compared with Mn2+, when studied with the unactivated form of calmodulin-dependent phosphodiesterase, while few compounds displayed differences in the presence of calmodulin. With a single divalent metal, marked differences in inhibitory potency and substrate specificity were also observed in the absence or presence of calmodulin suggesting that alterations in calmodulin and/or Ca2+ levels may greatly affect the response to phosphodiesterase inhibitors. Divalent metals did not alter the effects of inhibitors on the hydrolysis of cyclic AMP by the cyclic AMP-specific phosphodiesterase, however divalent metals would probably indirectly influence the relative cellular level of cyclic AMP hydrolyzed by this enzyme, and therefore the effects of inhibitors, through metal effects on the calmodulin-dependent phosphodiesterase. No correlation was found between the inhibitory activity of the compounds, many of which were cyclic nucleotide analogs, and their ability to activate cyclic AMP-dependent or cyclic GMP-dependent protein kinases or to affect cyclic AMP-dependent protein kinase activity by displacing bound cyclic AMP.  相似文献   

6.
Cyclic phosphatidic acid (cPA), an analog of lysophosphatidic acid (LPA), was previously identified in human serum. Although cPA possesses distinct physiological activities not elicited by LPA, its biochemical origins have scarcely been studied. In the present study, we assayed cPA formation from lysophosphatidylcholine in fetal bovine serum and found significant activity of transphosphatidylation that generated cPA. The cPA-producing enzyme was purified from fetal bovine serum using five chromatographic steps yielding a 100-kDa protein with cPA biosynthetic activity. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of its tryptic peptides revealed that the enzyme shared identical fragments with human autotaxin, a serum lysophospholipase D that produces LPA. Western blot analysis demonstrated that the 100-kDa protein was specifically recognized by an anti-human autotaxin antibody. Moreover, recombinant rat autotaxin was found to generate cPA in addition to LPA. No significant cPA- or LPA-producing activity was detected in autotaxin-depleted serum from bovine or human prepared by immunoprecipitation with an anti-autotaxin monoclonal antibody. These results indicate that the generation of cPA and LPA in serum is mainly attributed to autotaxin.  相似文献   

7.
Lysophospholipase D and its role in LPA production   总被引:2,自引:0,他引:2  
Lysophosphatidic acid (LPA) is an important lipid mediator that binds to G-protein-coupled receptors of the Edg family, inducing proliferation and migration in many cell lines. Much has been learned about pathways involved in LPA signaling, but the pathways responsible for LPA production remain to be fully resolved. Several potential routes have been proposed for LPA production. One involves the sequential actions of phopholipase D (PLD) and phospholipase A(2) (PLA(2)). Another route involves the sequential actions of PLA(2) and lysophospholipase D (lysoPLD). LysoPLD is defined as an enzyme which hydrolyzes lysophospholipids to produce LPA. Two major forms of lysoPLD, microsomal and extracellular forms, have been reported. A microsomal lysoPLD plays an important role in the metabolism of platelet-activating factor (PAF) because of its preference for alkyl-phospholipids. The extracellular form of lysoPLD coexists with its substrate, lysophosphatidylcholine (LPC), in the extracellular compartment. LysoPLDs purified from the extracellular space have recently been shown to be molecularly identical to autotaxin (ATX). ATX, an enzyme previously known to possess 5'-nucleotide pyrophosphatase and phosphodiesterase (PDE) activities, was subsequently shown to have lysoPLD activity. The unexpected linkage of the extracellular lysoPLD with ATX has raised many interesting questions. The characterization and purification of lysoPLDs are reviewed here.  相似文献   

8.
Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain enzyme displaying activities of GTP hydrolase and protein threonine/serine kinase in separate domains. Mutations in both catalytic domains have been linked to the onset of Parkinson’s disease, which triggered high interest in this enzyme as a potential target for drug development, particularly focusing on inhibition of the kinase activity. However, available activity assays are discontinuous, involving either radioactivity detection or coupling with antibodies. Here we describe a continuous and direct assay for LRRK2 kinase activity, combining a reported peptide sequence optimized for LRRK2 binding and an established strategy for fluorescence emission on magnesium ion chelation by phosphorylated peptides carrying an artificial amino acid. The assay was employed to evaluate apparent steady-state parameters for the wild type and two mutant forms of LRRK2 associated with Parkinson’s disease as well as to probe the effects of GTP, GDP, and autophosphorylation on the kinase activity of the enzyme. Staurosporine was evaluated as an inhibitor of the wild-type enzyme. It is expected that this assay will aid in mechanistic investigations of LRRK2.  相似文献   

9.
Recent studies have established that autotaxin (ATX), also known as phosphodiesterase Ialpha/autotaxin (PD-Ialpha/ATX) or (ecto)nucleotide pyrophosphatase/phosphodiesterase 2 [(E)NPP2], represents a multi-functional and multi-modular protein. ATX was initially thought to function exclusively as a phosphodiesterase/pyrophosphatase. However, it has become apparent that this enzymatically active site, which is ultimately responsible for ATX's originally discovered property of tumor cell motility stimulation, mediates the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA). In addition, a separate functionally active domain, here referred to as the Modulator of Oligodendrocyte Remodeling and Focal adhesion Organization (MORFO) domain, was discovered in studies analyzing the role of ATX during the differentiation of myelinating cells of the central nervous system (CNS), namely oligodendrocytes. This novel domain was found to mediate anti-adhesive, i.e. matricellular, properties and to promote morphological maturation of oligodendrocytes. In this review, we summarize our current understanding of ATX's structure-function domains and discuss their contribution to the presently known main functional roles of ATX.  相似文献   

10.
Darmstoff describes a family of gut smooth muscle-stimulating acetal phosphatidic acids initially isolated and characterized from the bath fluid of stimulated gut over 50 years ago. Despite similar structural and biological profiles, Darmstoff analogs have not previously been examined as potential LPA mimetics. Here, we report a facile method for the synthesis of potassium salts of Darmstoff analogs. To understand the effect of stereochemistry on lysophosphatidic acid mimetic activity, synthesis of optically pure stereoisomers of selected Darmstoff analogs was achieved starting with chiral methyl glycerates. Each Darmstoff analog was evaluated for subtype-specific LPA receptor agonist/antagonist activity, PPARgamma activation, and autotaxin inhibition. From this study we identified compound 12 as a pan-antagonist and several pan-agonists for the LPA(1-3) receptors. Introduction of an aromatic ring in the lipid chain such as analog 22 produced a subtype-specific LPA(3) agonist with an EC(50) of 692 nM. Interestingly, regardless of their LPA(1/2/3) ligand properties all of the Darmstoff analogs tested activated PPARgamma. However, these compounds are weak inhibitors of autotaxin. The results indicate that Darmstoff analogs constitute a novel class of lysophosphatidic acid mimetics.  相似文献   

11.
Incubation of a hepatocyte particulate fraction with ATP and the isolated catalytic unit of cyclic AMP-dependent protein kinase (A-kinase) selectively activated the high-affinity 'dense-vesicle' cycle AMP phosphodiesterase. Such activation only occurred if the membranes had been pre-treated with Mg2+. Mg2+ pre-treatment appeared to function by stimulating endogenous phosphatases and did not affect phosphodiesterase activity. Using the antiserum DV4, which specifically immunoprecipitated the 51 and 57 kDa components of the 'dense-vesicle' phosphodiesterase from a detergent-solubilized membrane extract, we isolated a 32P-labelled phosphoprotein from 32P-labelled hepatocytes. MgCl2 treatment of such labelled membranes removed 32P from the immunoprecipitated protein. Incubation of the Mg2+-pre-treated membranes with [32P]ATP and A-kinase led to the time-dependent incorporation of label into the 'dense-vesicle' phosphodiesterase, as detected by specific immunoprecipitation with the antiserum DV4. The time-dependences of phosphodiesterase activation and incorporation of label were similar. It is suggested (i) that phosphorylation of the 'dense-vesicle' phosphodiesterase by A-kinase leads to its activation, and that such a process accounts for the ability of glucagon and other hormones, which increase intracellular cyclic AMP concentrations, to activate this enzyme, and (ii) that an as yet unidentified kinase can phosphorylate this enzyme without causing any significant change in enzyme activity but which prevents activation and phosphorylation of the phosphodiesterase by A-kinase.  相似文献   

12.
The Src-family protein-tyrosine kinase (PTK) Lyn is the most important Src-family kinase in B cells, having both inhibitory and stimulatory activity that is dependent on the receptor, ligand, and developmental context of the B cell. An important role for Lyn has been reported in acute myeloid leukemia and chronic myeloid leukemia, as well as certain solid tumors. Although several Src-family inhibitors are available, the development of Lyn-specific inhibitors, or inhibitors with reduced off-target activity to Lyn, has been hampered by the lack of structural data on the Lyn kinase. Here we report the crystal structure of the non-liganded form of Lyn kinase domain, as well as in complex with three different inhibitors: the ATP analogue AMP-PNP; the pan Src kinase inhibitor PP2; and the BCR-Abl/Src-family inhibitor Dasatinib. The Lyn kinase domain was determined in its "active" conformation, but in the unphosphorylated state. All three inhibitors are bound at the ATP-binding site, with PP2 and Dasatinib extending into a hydrophobic pocket deep in the substrate cleft, thereby providing a basis for the Src-specific inhibition. Analysis of sequence and structural differences around the active site region of the Src-family PTKs were evident. Accordingly, our data provide valuable information for the further development of therapeutics targeting Lyn and the important Src-family of kinases.  相似文献   

13.
Ocular hypertension due to impaired aqueous humor (AH) drainage through the trabecular meshwork (TM) is a major risk factor for glaucoma, a leading cause of irreversible blindness. However, the etiology of ocular hypertension remains unclear. Although autotaxin, a secreted lysophospholipase D and its catalytic product lysophosphatidic acid (LPA) have been shown to modulate AH drainage through TM, we do not have a complete understanding of their role and regulation in glaucoma patients, TM and AH outflow. This study reports a significant increase in the levels of autotaxin, lysophosphatidylcholine (LPC), LPA and connective tissue growth factor (CTGF) in the AH of Caucasian and African American open angle glaucoma patients relative to age-matched non-glaucoma patients. Treatment of human TM cells with dexamethasone, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) increased the levels of autotaxin protein, a response that was mitigated by inhibitors of glucocorticoid receptor, NF-kB and SMAD3. Dexamethasone, TNF-α, IL-1β and LPC treatment of TM cells also led to an increase in the levels of CTGF, fibronectin and collagen type 1 in an autotaxin dependent manner. Additionally, in perfused enucleated mouse eyes, autotaxin and LPC were noted to decrease, while inhibition of autotaxin was increased aqueous outflow through the TM. Taken together, these results provide additional evidence for dysregulation of the autotaxin-LPA axis in the AH of glaucoma patients, reveal molecular insights into the regulation of autotaxin expression in TM cells and the consequences of autotaxin inhibitors in suppressing the fibrogenic response and resistance to AH outflow through the TM.  相似文献   

14.
Insulin-like growth factor-I (IGF-I) stimulated Xenopus laevis oocyte ribosomal S6 kinase activity 5- to 10-fold, with an apparent EC50 of 0.8 +/- 0.1 nM after 90 min of hormone treatment. IGF-I-stimulated enzyme activity was inhibited by treatment of oocytes with nonselective phosphodiesterase (PDE) inhibitors, with apparent IC50 values of 2 +/- 1 microM papaverine, 20 +/- 2 microM isobutylmethylxanthine, and 128 +/- 16 microM theophylline. Type III PDE inhibitors also inhibited IGF-I-stimulated S6 kinase activity with IC50 values of 9.7 +/- 0.3 microM Cl-930 and 84 +/- 23 microM imazodan (Cl-914). These drugs apparently affected an intracellular molecular event leading to activation of S6 kinase, since Cl-930 prevented IGF-I-stimulation of S6 kinase, but had no direct inhibitory effect when added to the S6 kinase enzyme assay mixture. While hormone-stimulated S6 kinase activity was inhibited by isobutylmethylxanthine (nonselective PDE inhibitor) and Cl-930 (PDE III inhibitor), Ro 20, 1724 and rolipram (PDE IV inhibitors) and dipyridamole (PDE V inhibitor) had no significant effect on activated enzyme levels. The time course for IGF-I stimulation of oocyte S6 kinase displayed a small early peak of activity approximately 0.15-0.4 time required for 50% of cell population to display white spots (GVBD50) and a second major increase in activity at 0.6-0.7 GVBD50 that was sustained until meiotic maturation was complete. The second wave of enzyme activation was inhibited by Cl-930, but the early increase was not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Isoform-selective agonists and antagonists of the lysophosphatidic acid (LPA) G protein-coupled receptors (GPCRs) have important potential applications in cell biology and therapy. LPA GPCRs regulate cancer cell proliferation, invasion, angiogenesis, and also biochemical resistance to chemotherapy- and radiotherapy-induced apoptosis. LPA and its analogues also are feedback inhibitors of the enzyme lysophospholipase D (lysoPLD, a.k.a., autotaxin, ATX), a central regulator of invasion and metastasis. For cancer therapy, the optimal therapeutic profile would be a metabolically-stabilized, pan-LPA receptor antagonist that also inhibited lysoPLD. For protection of gastrointestinal mucosa and lymphocytes, LPA agonists would be desirable to minimize or reverse radiation or chemical-induced injury. Analogues of lysophosphatidic acid (LPA) that are chemically modified to be less susceptible to phospholipases and phosphatases show activity as long-lived receptor-specific agonists and antagonists for LPA receptors, as well as inhibitors for the lysoPLD activity of ATX.  相似文献   

16.
The phosphodiesterase activity in the HT4.7 neural cell line was pharmacologically characterized, and phosphodiesterase isozyme 4 (PDE4) was found to be the predominant isozyme. The Km for cAMP was 1-2 microM, indicative of a "low Km" phosphodiesterase, and the activity was inhibited by PDE4-selective inhibitors rolipram and Ro20-1724, but not PDE3- or PDE2-selective inhibitors. Calcium, calmodulin, and cGMP, regulators of PDE1, PDE2, and PDE3, had no effect on cAMP hydrolysis. The protein tyrosine kinase inhibitor, genistein, inhibited HT4.7 cAMP phosphodiesterase activity by 85-95% with an IC50 of 4 microM; whereas daidzein, an inactive structural analog of genistein, had little effect on phosphodiesterase activity. This is a common pharmacological criterion used to implicate the regulation by a tyrosine kinase. However, genistein still inhibited phosphodiesterase activity with a mixed pattern of inhibition even when ion-exchange chromatography was used to partially purify phosphodiesterase away from the tyrosine kinase activity. Moreover, tyrphostin 51, another tyrosine kinase inhibitor, was found to also inhibit partially purified phosphodiesterase activity noncompetitively. These data suggest that HT4.7 phosphodiesterase activity is dominated by PDE4 and can be regulated by genistein and tyrphostin 51 by a tyrosine kinase-independent mechanism.  相似文献   

17.
Akt is a serine/threonine kinase that plays a critical role in cell survival signaling and its activation has been linked to tumorigenesis. Up-regulation of Akt as well as its upstream regulator phosphatidylinositol-3 kinase (PI3K) has been found in many tumors and the negative regulator of this pathway PTEN/MMAC is a tumor suppressor. As a target for drug discovery, we have expressed and purified an active Akt1 enzyme from a recombinant baculovirus-infected Sf9 cell culture. Coexpression of Akt1 with the catalytic subunit of PI3K or treatment with okadaic acid during expression was found to generate an active enzyme in the insect cell culture system. We have optimized the kinase activity and developed a simple quantitative kinase assay using biotinylated peptide substrates. Using the purified active enzyme, we have characterized its physical, catalytic and kinetic properties. Since Akt is closely related to protein kinase C (PKC) and protein kinase A, the issue of obtaining selective inhibitors of this enzyme was addressed by comparison of the structures of catalytic domains of Akt and PKC, derived by homology modeling methods. A number of amino acid differences in the ATP binding regions of these kinases were identified, suggesting that selective inhibitors of Akt can be discovered. However, the ATP binding regions are highly conserved in the three isoforms of Akt implying that the discovery of isoform-selective inhibitors would be very challenging.  相似文献   

18.
Akt is a serine/threonine kinase that plays a critical role in cell survival signaling and its activation has been linked to tumorigenesis. Up-regulation of Akt as well as its upstream regulator phosphatidylinositol-3 kinase (PI3K) has been found in many tumors and the negative regulator of this pathway PTEN/MMAC is a tumor suppressor. As a target for drug discovery, we have expressed and purified an active Akt1 enzyme from a recombinant baculovirus-infected Sf9 cell culture. Coexpression of Akt1 with the catalytic subunit of PI3K or treatment with okadaic acid during expression was found to generate an active enzyme in the insect cell culture system. We have optimized the kinase activity and developed a simple quantitative kinase assay using biotinylated peptide substrates. Using the purified active enzyme, we have characterized its physical, catalytic and kinetic properties. Since Akt is closely related to protein kinase C (PKC) and protein kinase A, the issue of obtaining selective inhibitors of this enzyme was addressed by comparison of the structures of catalytic domains of Akt and PKC, derived by homology modeling methods. A number of amino acid differences in the ATP binding regions of these kinases were identified, suggesting that selective inhibitors of Akt can be discovered. However, the ATP binding regions are highly conserved in the three isoforms of Akt implying that the discovery of isoform-selective inhibitors would be very challenging.  相似文献   

19.
《Cellular signalling》2002,14(3):231-238
In adipocytes, protein kinase B (PKB) has been suggested to be the enzyme that phosphorylates phosphodiesterase 3B (PDE3B), a key enzyme in insulin's antilipolytic signalling pathway. In order to screen for PKB phosphatases, adipocyte homogenates were fractionated using ion-exchange chromatography and analysed for PKB phosphatase activities. PKB phosphatase activity eluted as one main peak, which coeluted with serine/threonine phosphatases (PP)2A. In addition, adipocytes were incubated with inhibitors of PP. Incubation of adipocytes with 1 μM okadaic acid inhibited PP2A by 75% and PP1 activity by only 17%, while 1 μM tautomycin inhibited PP1 activity by 54% and PP2A by only 7%. Okadaic acid, but not tautomycin, induced the activation of both PKBα and PKBβ. Finally, PP2A subunits were found in several subcellular compartments, including plasma membranes (PM) where the phosphorylation of PKB is thought to occur. In summary, our results suggest that PP2A is the principal phosphatase that dephosphorylates PKB in adipocytes.  相似文献   

20.
Deoxycytidine kinase (dCK) is a critical enzyme for activation of anticancer nucleoside analogs. Its activity is controlled via Ser-74 phosphorylation. Here, we investigated which Ser/Thr phosphatase dephosphorylates Ser-74. In cells, the PP1/PP2A inhibitor okadaic acid increased both dCK activity and Ser-74 phosphorylation at concentrations reported to specifically target PP2A. In line with this, purified PP2A, but not PP1, dephosphorylated recombinant pSer-74-dCK. In cell lysates, the Ser-74-dCK phosphatase activity was found to be latent, Mn2+-activated, responsive to PP2A inhibitors, and diminished after PP2A-immunodepletion. Use of siRNAs allowed concluding definitively that PP2A constitutively dephosphorylates dCK in cells and negatively regulates its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号