首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of a clinical isolate of Acinetobacter baumannii showed that this bacterium was able to grow under iron-limiting conditions, using chemically defined growth media containing different iron chelators such as human transferrin, ethylenediaminedi-(o-hydroxyphenyl)acetic acid, nitrilotriacetic acid, and 2,2'-bipyridyl. This iron uptake-proficient phenotype was due to the synthesis and secretion of a catechol-type siderophore compound. Utilization bioassays using the Salmonella typhimurium iron uptake mutants enb-1 and enb-7 proved that this siderophore is different from enterobactin. This catechol siderophore was partially purified from culture supernatants by adsorption chromatography using an XAD-7 resin. The purified component exhibited a chromatographic behavior and a UV-visible light absorption spectrum different from those of 2,3-dihydroxybenzoic acid and other bacterial catechol siderophores. Furthermore, the siderophore activity of this extracellular catechol was confirmed by its ability to stimulate energy-dependent uptake of 55Fe(III) as well as to promote the growth of A. baumannii bacterial cells under iron-deficient conditions imposed by 60 microM human transferrin. Polyacrylamide gel electrophoresis analysis showed the presence of iron-regulated proteins in both inner and outer membranes of this clinical isolate of A. baumannii. Some of these membrane proteins may be involved in the recognition and internalization of the iron-siderophore complexes.  相似文献   

2.

Background

Iron is an important nutrient required by all forms of life.In the case of human hosts,the free iron availability is 10-18M,which is far less than what is needed for the survival of the invading bacterial pathogen.To survive in such conditions, bacteria express new proteins in their outer membrane and also secrete iron chelators called siderophores.

Results/ Discussion

Acinetobacter baumanniiATCC 19606, a nosocomial pathogen which grows under iron restricted conditions, expresses four new outer membrane proteins,with molecular weight ranging from 77 kDa to 88 kDa, that are called Iron Regulated Outer Membrane Proteins (IROMPs). We studied the functional and immunological properties of IROMPs expressed by A.baumaniiATCC 19606.The bands corresponding to IROMPs were eluted from SDS-PAGE and were used to immunize BALB/c mice for the production of monoclonal antibodies. Hybridomas secreting specific antibodies against these IROMPs were selected after screening by ELISA and their reactivity was confirmed by Western Blot. The antibodies then generated belonged to IgM isotype and showed bactericidical and opsonising activities against A.baumanii in vitro.These antibodies also blocked siderophore mediated iron uptake via IROMPs in bacteria.

Conclusion

This proves that iron uptake via IROMPs,which is mediated through siderophores,may have an important role in the survival of A.baumaniiinside the host,and helps establishing the infection.  相似文献   

3.
In many bacteria, the ferric uptake regulatory protein (Fur) has a central role in the negative regulation of genes affected by iron limitation. In this study, Vibrio parahaemolyticus strains carrying mutations in the fur gene encoding Fur were isolated by the manganese selection method to assess the function of Fur in connection with alternations in the coordinate expression of the siderophore vibrioferrin (VF) and iron-repressible outer membrane proteins (IROMPs). Ten out of 25 manganese-resistant mutants constitutively produced VF and expressed at least two IROMPs irrespective of the iron concentration in the medium. PCR-direct DNA sequencing of the fur genes in these mutants identified four different point mutations causing amino acid changes. Moreover, a fur overexpressing plasmid was constructed to prepare antiserum against V. parahaemolyticus Fur. Western blotting with this antiserum revealed that the intracellular abundance of the wild-type Fur was not significantly affected by the iron concentrations in the growth medium, and that the Fur proteins of the mutant strains occurred at substantially smaller amounts and/or migrated more rapidly in sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the wild-type Fur. These data afford an additional insight into the structure-function relationship of Fur and imply its involvement in the iron acquisition systems of V. parahaemolyticus, although it is yet unknown whether its action on the target genes is direct or indirect.  相似文献   

4.
Seventeen isolates of Klebsiella aerogenes, K. pneumoniae, K. oxytocum and K. edwardsii were examined for their ability to express iron-regulated outer membrane proteins (IROMPs) and high affinity iron-chelating agents (siderophores). In response to iron deprivation, all strains induced at least 4 IROMPs in the approximate Mr range 70 000–85 000 and the phenolate siderophore enterobactin. Six strains also produced the hydroxamate siderophore aerobactin. The Klebsiella enterobactin receptor was identified as an 81 000 Mr iron-repressible outer membrane (OM) protein which appears to be highly conserved and shows considerable antigenic homology with that of Escherichia coli.  相似文献   

5.
Abstract Deprivation of Paracoccus denitrificans of iron in sodium molybdate-containing medium caused a slower rate of growth and lower final cell yield, in contrast to our previous studies in non-sodium molybdate-containing medium, where iron deprivation had little effect on growth rate. Five high M r outer membrane proteins and catechol production were induced in iron-deprived cultures. The fifth protein, M r 72 000, was produced later than the others. Growth of iron-deprived cells in medium containing 20 μM ferric citrate repressed siderophore and iron deprivation-induced protein production, and led to production of an M r 23 000 outer membrane protein (half maximum production after 5 h). Synthesis of the M r 23 000 and high M r proteins appeared to be mutally exclusive, and to be regulated by the cell's iron status. Cells inoculated into medium containing 20 μM ferric citrate took up 92% of the iron within 1 h, suggesting the occurrence of a nonsiderophore mediated, 'low affinity' iron uptake pathway.  相似文献   

6.
Rhizobium leguminosarum IARI 102 produced a phenolate type siderophore (a derivative of 2,3-DHBA) under iron-limited conditions. Addition of Fe3+ to the culture medium increased the growth yield significantly, but repressed the production of the iron-chelating compound. Iron level of culture medium also had a significant role in the composition of outer membrane proteins ofR. leguminosarum IARI 102. Maximum iron uptake was observed only in the presence of its own siderophore.  相似文献   

7.
Abstract Siderophore produced by cowpea Rhizobium GN1 (Peanut isolate) was shown to be involved in iron uptake by this organism. Siderophore enhanced iron uptake in iron-starved cells. SDS-PAGE analysis of the outer membrane proteins showed two iron repressible outer membrane proteins with approximate molecular mass of 80 kDa and 76 kDa. A siderophore non-producing mutant, which was unable to grow on a medium containing synthetic iron chelators unless and until iron was added exogenously in the medium, could use siderophore of the wild-type for iron uptake indicating that the receptor for Fe-siderophore complex was intact in the mutant.  相似文献   

8.
Spores are the infectious form of Bacillus anthracis (BA), causing cutaneous, inhalation and gastrointestinal anthrax. Because of the possible use of BA spores in a bioterrorism attack, there is considerable interest in studying spore biology. In the laboratory, however, it takes a number of days to prepare spores. Standard sporulation protocols, such as the use of ‘PA broth’, allow sporulation of BA to occur in 3 to 5 days. Another method employs growth of BA on plates in the dark for several days until they have efficiently sporulated. In efforts to determine the effect of iron on gene expression in BA, we grew BA Sterne strain 7702 in a minimal defined medium (CDM; Koppisch et al., 2005) with various concentrations of iron and glucose. As part of our initial observations, we monitored BA sporulation in CDM via light microscopy. In glucose-free CDM containing 1.5 mM Fe(NO3)3 (CDM-Fe), > 95% of the BA sporulated by 30 h; a far shorter time period than expected. We pursued this observation and we further characterized spores derived from PA and CDM-Fe media. Purified spores derived from PA or CDM-Fe had similar morphologies when viewed by light or electron microscopy, and were equally resistant to harsh conditions including heat (65 °C), ice and fresh 30% H2O2. Spore viability in long term cold storage in water was similar for the two spore preparations. Extracted spore coat proteins were evaluated by SDS-PAGE and silver staining, which revealed distinct protein profiles for PA and CDM-Fe spore coat extracts. ELISA assays were done to compare the interaction of the two spore preparations with rabbit antiserum raised against UV-killed Sterne strain 7702 spores prepared in PA medium. Spores from both media reacted identically with this antiserum. Finally, the interaction and fate of spores incubated with macrophages in vitro was very similar. In summary, BA spores induced in CDM-Fe or in PA medium are similar by several criteria, but show distinct extractable coat proteins. CDM-Fe liquid medium can be used for rapid production of BA spores, and could save considerable time in spore research studies.  相似文献   

9.
Background: Helicobacter pylori infection is known to be a cause of iron deficiency anemia (IDA) that is unresponsive to iron supplements. H. pylori bind iron to a specific receptor by iron-repressible outer membrane proteins (IROMPs) under conditions of restricted iron.
Materials and Methods: We compared the expression of IROMPs from strains of H. pylori under both iron-restricted and iron-supplemented conditions to determine the difference between strains with and without IDA. One standard strain, two clinical strains, and three IDA strains were cultured; and then the IROMPs were extracted under iron-restricted and iron-supplemented conditions. We used SDS-PAGE to compare the expression of the IROMPs from each strain.
Results:  IROMPs were found in IDA strains under iron-restricted conditions and their molecular sizes were estimated to be 56, 48, 41, and 37 kDa. In the iron-repleted media, the IROMPs were no longer present.
Conclusion: In the iron-depleted state, specific H. pylori strains associated with IDA demonstrated an advantage in iron acquisition due to a higher expression of IROMPs. Our results can explain in part why some patients with H. pylori infection are more prone to develop clinical IDA under restricted iron conditions in the host.  相似文献   

10.
Acquisition of iron by Aeromonas salmonicida.   总被引:9,自引:1,他引:8       下载免费PDF全文
The ability of six typical and three atypical strains of Aeromonas salmonicida to sequester Fe3+ from the high-affinity iron chelators ethylenediaminedihydroxy-phenylacetic acid, lactoferrin, and transferrin was determined. Typical strains were readily able to sequester Fe3+ and used two different mechanisms. One mechanism was inducible and appeared to involve production of a low-molecular-weight soluble siderophore(s). Iron uptake by this mechanism was strongly inhibited by ferricyanide. One virulent strain displayed a second mechanism which was constitutive and required cell contact with Fe3+-lactoferrin or -transferrin. This strain did not produce a soluble siderophore(s) but could utilize the siderophore(s) produced by the other strain. Fe3+ uptake by this stripping mechanism was strongly inhibited by dinitrophenol. Atypical strains displayed a markedly reduced ability to sequester iron from high-affinity chelators, although one of them was able to utilize the siderophores produced by the typical strain. In all strains examined, Fe3+ limitation resulted in the increased synthesis of several high-molecular-weight outer membrane proteins.  相似文献   

11.
Iron transport systems of Serratia marcescens.   总被引:2,自引:0,他引:2       下载免费PDF全文
A Angerer  B Klupp    V Braun 《Journal of bacteriology》1992,174(4):1378-1387
Serratia marcescens W225 expresses an unconventional iron(III) transport system. Uptake of Fe3+ occurs in the absence of an iron(III)-solubilizing siderophore, of an outer membrane receptor protein, and of the TonB and ExbBD proteins involved in outer membrane transport. The three SfuABC proteins found to catalyze iron(III) transport exhibit the typical features of periplasmic binding-protein-dependent systems for transport across the cytoplasmic membrane. In support of these conclusions, the periplasmic SfuA protein bound iron chloride and iron citrate but not ferrichrome, as shown by protection experiments against degradation by added V8 protease. The cloned sfuABC genes conferred upon an Escherichia coli aroB mutant unable to synthesize its own enterochelin siderophore the ability to grow under iron-limiting conditions (in the presence of 0.2 mM 2.2'-dipyridyl). Under extreme iron deficiency (0.4 mM 2.2'-dipyridyl), however, the entry rate of iron across the outer membrane was no longer sufficient for growth. Citrate had to be added in order for iron(III) to be translocated as an iron citrate complex in a FecA- and TonB-dependent manner through the outer membrane and via SfuABC across the cytoplasmic membrane. FecA- and TonB-dependent iron transport across the outer membrane could be clearly correlated with a very low concentration of iron in the medium. Expression of the sfuABC genes in E. coli was controlled by the Fur iron repressor gene. S. marcescens W225 was able to synthesize enterochelin and take up iron(III) enterochelin. It contained an iron(III) aerobactin transport system but lacked aerobactin synthesis. This strain was able to utilize the hydroxamate siderophores ferrichrome, coprogen, ferrioxamine B, rhodotorulic acid, and schizokinen as sole iron sources and grew on iron citrate as well. In contrast to E. coli K-12, S. marcescens could utilize heme. DNA fragments of the E. coli fhuA, iut, exbB, and fur genes hybridized with chromosomal S. marcescens DNA fragments, whereas no hybridization was obtained between S. marcescens chromosomal DNA and E. coli fecA, fhuE, and tonB gene fragments. The presence of multiple iron transport systems was also indicated by the increased synthesis of at least five outer membrane proteins (in the molecular weight range of 72,000 to 87,000) after growth in low-iron media. Serratia liquefaciens and Serratia ficaria produced aerobactin, showing that this siderophore also occurs in the genus Serratia.  相似文献   

12.
Zinc concentrations ranging between 0.1 and 1 mm only slightly reduced maximal growth of wild-type Pseudomonas aeruginosa 7NSK2 in iron-limiting casamino acid medium, but had a clear negative effect on the growth of mutant MPFM1 (pyoverdin negative) and especially mutant KMPCH (pyoverdin and pyochelin negative). Production of pyoverdin by wild-type strain 7NSK2 was significantly increased in the presence of 0.5 mm zinc and could not be repressed by iron even at a concentration of 100 m. Siderophore detection via isoelectrofocusing revealed that mutant KMPCH did not produce any siderophores, while mutant MPFM1 overproduced a siderophore with an acidic isoelectric point, most likely pyochelin. Pyochelin production by MPFM1 was stimulated by the presence of zinc in a similar way as pyoverdin for the wild-type. Analysis of outer membrane proteins revealed that three iron regulated outer membrane proteins (IROMPs) (90, 85 and 75 kDa) were induced by iron deficiency in the wild-type, while mutants were found to have altered IROMP profiles. Zinc specifically enhanced the production of a 85 kDa IROMP in 7NSK2, a 75 kDa IROMP in MPFM1 and a 90 kDa IROMP in KMPCH.  相似文献   

13.
溶藻弧菌铁载体合成及外膜蛋白表达的研究   总被引:3,自引:0,他引:3  
初步研究了海洋动物病原菌溶藻弧菌的铁摄取机制。溶藻弧菌能够在高浓度铁螯合剂2-2二联吡啶的培养基中存活。在限铁环境中,溶藻弧菌生长受到抑制,补加铁可以消除这种抑制作用。通过铁载体定量检测,发现分离于发病鱼体的溶藻弧菌MVP01产铁载体量大于分离于海水的菌株No·1·1587。互补实验证明溶藻弧菌的铁载体粗提物能够被铁载体合成缺陷的大肠杆菌突变株AN93利用。在铁限制培养环境中,溶藻弧菌合成了约80kD铁调控外膜蛋白。铁摄取系统在溶藻弧菌的生存和致病性方面,都有重要的作用。  相似文献   

14.
Under iron stress, Legionella pneumophila secretes legiobactin, a nonclassical siderophore that is reactive in the chrome azurol S (CAS) assay. Here, we have optimized conditions for legiobactin expression, shown its biological activity, and identified two genes, lbtA and lbtB, which are involved in legiobactin production. lbtA appears to be iron repressed and encodes a protein that has significant homology with siderophore synthetases, and FrgA, a previously described iron-regulated protein of L. pneumophila. lbtB encodes a protein homologous with members of the major facilitator superfamily of multidrug efflux pumps. Mutants lacking lbtA or lbtB were defective for legiobactin, producing 40 to 70% less CAS reactivity in deferrated chemically defined medium (CDM). In bioassays, mutant CDM culture supernatants, unlike those of the wild type, did not support growth of iron-limited wild-type bacteria in 2',2'-dipyridyl-containing buffered charcoal yeast extract (BCYE) agar and a ferrous iron transport mutant on BCYE agar without added iron. The lbtA mutant was modestly defective for growth in deferrated CDM containing the iron chelator citrate, indicating that legiobactin is required in conditions of severe iron limitation. Complementation of the lbt mutants restored both siderophore expression, as measured by the CAS assay and bioassays, and bacterial growth in deferrated, citrate-containing media. The lbtA mutant replicated as the wild type did in macrophages, amoebae, and the lungs of mice. However, L. pneumophila expresses lbtA in the macrophage, suggesting that legiobactin, though not required, may play a dispensable role in intracellular growth. The discovery of lbtAB represents the first identification of genes required for L. pneumophila siderophore expression.  相似文献   

15.
Abstract In Helicobacter pylori , in vitro iron limitation induces the expression of several iron repressible outer membrane proteins (IROMPs), which are not expressed under normal growth conditions. To substantiate their proposed role in virulence of H. pylori , we determined whether these IROMPs are also expressed in vivo. Therefore, we tested whether sera of patients with H. pylori infection contained antibodies against IROMPs. All sera from 20 H. pylori positive patients showed a clear immune response against a 77 kDa heme-binding IROMP in an immunoblot assay. Antibody responses against the other IROMPs were also found, but with lower frequencies. Serum samples from 18 patients negative for H. pylori infection did not show any immunoreactivity with IROMPs. These results indicate that the IROMPs of H. pylori are immunogenic and are expressed in vivo.  相似文献   

16.
Since the environmental iron concentration has emerged as an important attribute in the expression of bacterial virulence, the purpose of this study was to determine the effects of transferrin, lactoferrin, heme compounds, and inorganic iron sources (ferric and ferrous sulfate) on the growth of Bilophila wadsworthia and to study its outer membrane composition when grown under these different simulated in vivo conditions. Lactoferrin, transferrin, hemin and hemoglobin supported full growth of the bacteria in media lacking other iron sources. Bilophila wadsworthia was also capable of growing in the presence of ferrous and ferric sulfate. Profiles obtained by SDS-PAGE showed two iron-regulated outer membrane proteins (IROMPs) of 190 kDa and 88 kDa. The 190 kDa was susceptible to proteinase K cleavage in whole cells, indicating its exposure at the cell surface. These two major IROMPs were expressed in iron-restricted media supplemented with iron-bound organic sources and repressed by the addition of inorganic iron sources.  相似文献   

17.
18.
Vibrio cholerae strains secrete a phenolate-type siderophore when grown in low-iron medium. The siderophore was detected as early as 3.5 h after downshift to iron-poor medium, and it continued to accumulate in the medium as the cells entered stationary phase. Two clinical isolates and an environmental isolate were examined for the amount of siderophore produced. The environmental isolate produced more siderophore and continued to secrete it at concentrations of iron that repressed synthesis in the clinical isolates. Concomitant with production of siderophore, at least six new proteins were seen in the outer membranes of iron starved cells. One of the proteins was large (200,000 Mr [220K]) and appeared to be loosely associated with the outer membrane. The other five proteins had approximate Mr values of 77K, 76K, 75K, 73K, and 62K. The 62K protein, like the 40K major outer membrane protein, was heat modifiable. One or more of these proteins may be a component of the receptor for the iron-siderophore complex.  相似文献   

19.
We investigated the incidence of plasmid-mediated and chromosome-mediated iron uptake systems in strains of Vibrio anguillarum that belong to serotypes O1 and O2 and were isolated from different fish species and in different geographic areas. All of the strains gave positive reactions in CAS agar medium and in the Arnow test, which indicated that catechol types of siderophores were produced. The majority of V. anguillarum serotype O1 strains harbored a 65-kb plasmid similar to plasmid pJM1 from strain 775, which encodes the siderophore anguibactin and its outer membrane receptor, protein OM2. All of the isolates harboring this plasmid promoted the growth of an anguibactin-deficient receptor-proficient mutant derived from strain 775, but none of these isolates promoted the growth of mutants lacking receptor OM2. Furthermore, under iron-limiting conditions all of these strains induced outer membrane proteins that were identical in size to protein OM2 of strain 775. In contrast, none of the serotype O2 strains contained a high-molecular-weight plasmid, but all of them induced the growth of mutants defective in the anguibactin-mediated system regardless of the presence or absence of receptor OM2. The serotype O2 strains, but not the plasmid-bearing serotype O1 strains, also induced the growth of Salmonella typhimurium enb-1 which utilizes only enterobactin as a siderophore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We investigated the incidence of plasmid-mediated and chromosome-mediated iron uptake systems in strains of Vibrio anguillarum that belong to serotypes O1 and O2 and were isolated from different fish species and in different geographic areas. All of the strains gave positive reactions in CAS agar medium and in the Arnow test, which indicated that catechol types of siderophores were produced. The majority of V. anguillarum serotype O1 strains harbored a 65-kb plasmid similar to plasmid pJM1 from strain 775, which encodes the siderophore anguibactin and its outer membrane receptor, protein OM2. All of the isolates harboring this plasmid promoted the growth of an anguibactin-deficient receptor-proficient mutant derived from strain 775, but none of these isolates promoted the growth of mutants lacking receptor OM2. Furthermore, under iron-limiting conditions all of these strains induced outer membrane proteins that were identical in size to protein OM2 of strain 775. In contrast, none of the serotype O2 strains contained a high-molecular-weight plasmid, but all of them induced the growth of mutants defective in the anguibactin-mediated system regardless of the presence or absence of receptor OM2. The serotype O2 strains, but not the plasmid-bearing serotype O1 strains, also induced the growth of Salmonella typhimurium enb-1 which utilizes only enterobactin as a siderophore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号