首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The approximately 150 nt tRNA-like structure present at the 3' end of each of the brome mosaic virus (BMV) genomic RNAs is sufficient to direct minus-strand RNA synthesis. RNAs containing mutations in the tRNA-like structure that decrease minus-strand synthesis were tested for their ability to interact with RdRp (RNA-dependent RNA polymerase) using a template competition assay. Mutations that are predicted to disrupt the pseudoknot and stem B1 do not affect the ability of the tRNA-like structure to interact with RdRp. Similarly, the +1 and +2 nucleotides are not required for stable template-RdRp interaction. Mutations in the bulge and hairpin loops of stem C decreased the ability of the tRNA-like structure to interact with RdRp. Furthermore, in the absence of the rest of the BMV tRNA, stem C is able to interact with RdRp. The addition of an accessible initiation sequence containing ACCA3' to stem C created an RNA capable of directing RNA synthesis. Synthesis from this minimal minus-strand template is dependent on sequences in the hairpin and bulged loops.  相似文献   

6.
7.
Central to the process of plus-strand RNA virus genome amplification is the viral RNA-dependent RNA polymerase (RdRp). Understanding its regulation is of great importance given its essential function in viral replication and the common architecture and catalytic mechanism of polymerases. Here we show that Turnip yellow mosaic virus (TYMV) RdRp is phosphorylated, when expressed both individually and in the context of viral infection. Using a comprehensive biochemical approach, including metabolic labeling and mass spectrometry analyses, phosphorylation sites were mapped within an N-terminal PEST sequence and within the highly conserved palm subdomain of RNA polymerases. Systematic mutational analysis of the corresponding residues in a reverse genetic system demonstrated their importance for TYMV infectivity. Upon mutation of the phosphorylation sites, distinct steps of the viral cycle appeared affected, but in contrast to other plus-strand RNA viruses, the interaction between viral replication proteins was unaltered. Our results also highlighted the role of another TYMV-encoded replication protein as an antagonistic protein that may prevent the inhibitory effect of RdRp phosphorylation on viral infectivity. Based on these data, we propose that phosphorylation-dependent regulatory mechanisms are essential for viral RdRp function and virus replication.  相似文献   

8.
R Quadt  E M Jaspars 《FEBS letters》1991,278(1):61-62
The necessity of coat protein for infection of plants by alfalfa mosaic virus (AIMV) and other ilarviruses distinguishes this virus group from other plant virus groups. Recently, the presence of both a zinc-finger type motif and zinc in AIMV coat protein was described [(1989) Virology 168, 48-56]. We studied the effect of a zinc chelator on viral RNA synthesis. Strong inhibition of AIMV RNA-dependent RNA polymerase (RdRp) by ortho-phenanthroline (OP) was observed.  相似文献   

9.
C C Kao  J H Sun 《Journal of virology》1996,70(10):6826-6830
Various DNA- and RNA-dependent RNA polymerases have been reported to use oligoribonucleotide primers to initiate nucleic acid synthesis. For the brome mosaic virus RNA-dependent RNA polymerase (RdRp), we determined that in reactions performed with limited GTP concentrations, minus-strand RNA synthesis can be stimulated by the inclusion of guanosine monophosphate or specific oligoribonucleotides. Furthermore, guanylyl-3',5'-guanosine (GpG) was incorporated into minus-strand RNA and increased the rate of minus-strand RNA synthesis. In the presence of GpG, RdRp's Km for GTP decreased from 50 microM to approximately 3 microM while the Kms for other nucleotides were unaffected. These results have implications for the mechanism of initiation by RdRp.  相似文献   

10.
Replication of viral RNA genomes requires the specific interaction between the replicase and the RNA template. Members of the Bromovirus and Cucumovirus genera have a tRNA-like structure at the 3' end of their genomic RNAs that interacts with the replicase and is required for minus-strand synthesis. In Brome mosaic virus (BMV), a stem-loop structure named C (SLC) is present within the tRNA-like region and is required for replicase binding and initiation of RNA synthesis in vitro. We have prepared an enriched replicase fraction from tobacco plants infected with the Fny isolate of Cucumber mosaic virus (Fny-CMV) that will direct synthesis from exogenously added templates. Using this replicase, we demonstrate that the SLC-like structure in Fny-CMV plays a role similar to that of BMV SLC in interacting with the CMV replicase. While the majority of CMV isolates have SLC-like elements similar to that of Fny-CMV, a second group displays sequence or structural features that are distinct but nonetheless recognized by Fny-CMV replicase for RNA synthesis. Both motifs have a 5'CA3' dinucleotide that is invariant in the CMV isolates examined, and mutational analysis indicates that these are critical for interaction with the replicase. In the context of the entire tRNA-like element, both CMV SLC-like motifs are recognized by the BMV replicase. However, neither motif can direct synthesis by the BMV replicase in the absence of other tRNA-like elements, indicating that other features of the CMV tRNA can induce promoter recognition by a heterologous replicase.  相似文献   

11.
Osman TA  Coutts RH  Buck KW 《Journal of virology》2006,80(21):10743-10751
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.  相似文献   

12.
The NS5B RNA-dependent RNA polymerase encoded by hepatitis C virus (HCV) plays a key role in viral replication. Reported here is evidence that HCV NS5B polymerase acts as a functional oligomer. Oligomerization of HCV NS5B protein was demonstrated by gel filtration, chemical cross-linking, temperature sensitivity, and yeast cell two-hybrid analysis. Mutagenesis studies showed that the C-terminal hydrophobic region of the protein was not essential for its oligomerization. Importantly, HCV NS5B polymerase exhibited cooperative RNA synthesis activity with a dissociation constant, K(d), of approximately 22 nM, suggesting a role for the polymerase-polymerase interaction in the regulation of HCV replicase activity. Further functional evidence includes the inhibition of the wild-type NS5B polymerase activity by a catalytically inactive form of NS5B. Finally, the X-ray crystal structure of HCV NS5B polymerase was solved at 2.9 A. Two extensive interfaces have been identified from the packing of the NS5B molecules in the crystal lattice, suggesting a higher-order structure that is consistent with the biochemical data.  相似文献   

13.
14.
Infectious pancreatic necrosis virus (IPNV) is a bisegmented, double-stranded RNA (dsRNA) virus of the Birnaviridae family that causes widespread disease in salmonids. Its two genomic segments are encapsulated together with the viral RNA-dependent RNA polymerase, VP1, and the assumed internal protein, VP3, in a single-shell capsid composed of VP2. Major aspects of the molecular biology of IPNV, such as particle assembly and interference with host macromolecules, are as yet poorly understood. To understand the infection process, analysis of viral protein interactions is of crucial importance. In this study, we focus on the interaction properties of VP3, the suggested key organizer of particle assembly in birnaviruses. By applying the yeast two-hybrid system in combination with coimmunoprecipitation, VP3 was proven to bind to VP1 and to self-associate strongly. In addition, VP3 was shown to specifically bind to dsRNA in a sequence-independent manner by in vitro pull-down experiments. The binding between VP3 and VP1 was not dependent on the presence of dsRNA. Deletion analyses mapped the VP3 self-interaction domain within the 101 N-terminal amino acids and the VP1 interaction domain within the 62 C-terminal amino acids of VP3. The C-terminal end was also crucial but not sufficient for the dsRNA binding capacity of VP3. For VP1, the 90 C-terminal amino acids constituted the only dispensable part for maintaining VP3-binding ability. Kinetic analysis revealed the presence of VP1-VP3 complexes prior to the formation of mature virions in IPNV-infected CHSE-214 cells, which indicates a role in promoting the assembly process.  相似文献   

15.
Cheng JH  Peng CW  Hsu YH  Tsai CH 《Journal of virology》2002,76(12):6114-6120
The 3' terminus of the bamboo mosaic potexvirus (BaMV) contains a poly(A) tail, the 5' portion of which participates in the formation of an RNA pseudoknot required for BaMV RNA replication. Recombinant RNA-dependent RNA polymerase (RdRp) of BaMV binds to the pseudoknot poly(A) tail in gel mobility shift assays (C.-Y. Huang, Y.-L. Huang, M. Meng, Y.-H. Hsu, and C.-H. Tsai, J. Virol. 75:2818-2824, 2001). Approximately 20 nucleotides of the poly(A) tail adjacent to the 3' untranslated region (UTR) are protected from diethylpyrocarbonate modification, suggesting that this region may be used to initiate minus-strand RNA synthesis. The 5' terminus of the minus-strand RNA synthesized by the RdRp in vitro was examined using 5' rapid amplification of cDNA ends (RACE) and DNA sequencing. Minus-strand RNA synthesis was found to initiate from several positions within the poly(A) tail, with the highest frequency of initiation being from the 7th to the 10th adenylates counted from the 5'-most adenylate of the poly(A) tail. Sequence analyses of BaMV progeny RNAs recovered from Nicotiana benthamiana protoplasts which were inoculated with mutants containing a mutation at the 1st, 4th, 7th, or 16th position of the poly(A) tail suggested the existence of variable initiation sites, similar to those found in 5' RACE experiments. We deduce that the initiation site for minus-strand RNA synthesis is not fixed at one position but resides opposite one of the 15 adenylates of the poly(A) tail immediately downstream of the 3' UTR of BaMV genomic RNA.  相似文献   

16.
17.
The 42S RNA from Semliki Forest virus contains a polyadenylate [poly(A)] sequence that is 80 to 90 residues long and is the 3'-terminus of the virion RNA. A poly(A) sequence of the same length was found in the plus strand of the replicative forms (RFs) and replicative intermediates (RIs) isolated 2 h after infection. In addition, both RFs and RIs contained a polyuridylate [poly(U)] sequence. No poly(U) was found in virion RNA, and thus the poly(U) sequence is in minus-strand RNA. The poly(U) from RFs was on the average 60 residues long, whereas that isolated from the RIs was 80 residues long. Poly(U) sequences isolated from RFs and RIs by digestion with RNase T1 contained 5'-phosphorylated pUp and ppUp residues, indicating that the poly(U) sequence was the 5'-terminus of the minus-strand RNA. The poly(U) sequence in RFs or RIs was free to bind to poly(A)-Sepharose only after denaturation of the RNAs, indicating that the poly(U) was hydrogen bonded to the poly(A) at the 3'-terminus of the plus-strand RNA in these molecules. When treated with 0.02 mug of RNase A per ml, both RFs and RIs yielded the same distribution of the three cores, RFI, RFII, and RFIII. The minus-strand RNA of both RFI and RFIII contained a poly(U) sequence. That from RFII did not. It is known that RFI is the double-stranded form of the 42S plus-strand RNA and that RFIII is the experimetnally derived double-stranded form of 26S mRNA. The poly(A) sequences in each are most likely transcribed directly from the poly(U) at the 5'-end of the 42S minus-strand RNA. The 26S mRNA thus represents the nucleotide sequence in that one-third of the 42S plus-strand RNA that includes its 3'-terminus.  相似文献   

18.
A foot-and-mouth disease virus (FMDV, HKN/2002) was isolated in Hong Kong in 2002. The nucleotide sequence of the 3D(pol) gene encoding the viral RNA-dependent RNA polymerase was determined and compared with that of the same gene from other FMDVs. The 3D(pol) gene was 1410 nucleotides in length encoding a protein of 470 amino acid residues. Sequence comparisons indicated that HKN/2002 belonged to serotype O. An evolutionary tree based on the 3D(pol) sequences of 20 FMDV isolates revealed that the nucleotide sequence of the HKN/2002 3D(pol) gene was most similar to those of isolates found in Taiwan in 1997, suggesting that they share a common ancestor. The amino acid sequence of the HKN/2002 3D(pol) gene was determined and aligned with those of representative isolates from seven other Picornaviridae genera. Eight highly conserved regions were detected, indicating a conserved functional relevance for these motifs. Alignment of 20 FMDV 3D(pol) amino acid sequences revealed a hypermutation region near the N-terminus that may help the virus evade host immune systems.  相似文献   

19.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) belongs to a class of membrane proteins termed tail-anchored proteins. Here, we show that the HCV RdRp C-terminal membrane insertion sequence traverses the phospholipid bilayer as a transmembrane segment. Moreover, the HCV RdRp was found to be retained in the endoplasmic reticulum (ER) or an ER-derived modified compartment both following transient transfection and in the context of a subgenomic replicon. An absolutely conserved GVG motif was not essential for membrane insertion but possibly provides a docking site for transmembrane protein-protein interactions. These findings have important implications for the functional architecture of the HCV replication complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号