首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixty-one isolates of Rhizobium meliloti from two field sites which had been previously classified into 15 phage types on the basis of sensitivity to 16 typing phages, were subjected to insertion sequence (IS) hybridization using DNA probes for ISR m 3 and ISR m 5. Isolates from all but one phage type contained ISR m 3 (apparent copy no. 1–11) and all isolates contained ISR m 5 (apparent copy no. 3–11). The isolates were placed into 24 IS classes based on differences in their respective ISR m 3 and ISR m 5 hybridization profiles. At either field site, isolates representing different phage types possessed IS hybridization profiles that differed from each other, while those comprising a specific type had identical or closely related profiles. Isolates from one phage type were unusual since they did not react with any of the typing phages and were shown by IS hybridization to constitute a heterogeneous group. Evidence for spatial effects were provided by isolates from two of six types present at both sites which fell into separate IS classes on the basis of their site of origin. These data have ecological implications and suggest that for a particular site, phage typing may be employed for the rapid assessment of the genetic diversity among field isolates.  相似文献   

2.
Legume agglutinins that bind to Rhizobium meliloti.   总被引:2,自引:1,他引:1       下载免费PDF全文
A protein found in seeds and roots of alfalfa (Medicago sativa) was implicated in the specificity of the infection process, based on its binding to the symbiont Rhizobium meliloti. We found an agglutinin with similar properties in seeds and roots of sweet clover (Melilotis alba). The sweet clover differed from alfalfa in nodulation by a mutant strain of R. meliloti, but the agglutinins were indistinguishable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Rhizobium agglutination, and cross-reactivity to antibodies. Similar agglutinins binding R. meliloti were found in seeds of legumes from different cross-inoculation groups, including soybean (Glycine max), cowpea (Vigna unguiculata), pea (Pisum sativum L), and mung bean (Vigna mungo). The agglutinins from these legumes were recognized by antibodies raised against the agglutinins of alfalfa and sweet clover. Seeds of corn (Zea mays) and tomato (Lycopersicon esculentum) contained a protein similar to the legume agglutinin, but it did not react with the antibodies. We conclude that the alfalfa agglutinin is representative of a common legume protein and that there is no evidence for its role in specificity or nodule initiation.  相似文献   

3.
Two hundred forty-three isolates of alfalfa nodule bacteria (Sinorhizobium meliloti) were obtained from legume nodules and soils sampled in the northern Aral region, experiencing secondary salinization. Isolates obtained from nodules (N isolates) were significantly more salt-tolerant than those from soils (S isolates) when grown in a liquid medium with 3.5% NaCl. It was found that wild species of alfalfa, melilot, and trigonella preferably formed symbioses with salt-tolerant nodule bacteria in both salinized and nonsalinized soils. Only two alfalfa species, Medicago falcata and M. trautvetteri, formed efficient symbioses in soils contrasting in salinity. The formation of efficient symbiosis with alfalfa in the presence of 0.6% NaCl was studied in 36 isolates (N and S) differing in salt tolerance and symbiotic efficiency. Fifteen isolates formed efficient symbioses in the presence of salt. The increase in the dry weight of the plants was 25-68% higher than in the control group. The efficiency of symbiotic interaction under salinization conditions depended on the efficiency of the isolates under standard conditions but did not correlate with the source of nodule bacteria (soil or nodule) or their salt tolerance. The results indicate that nodule bacterium strains forming efficient symbioses under salinization conditions can be found.  相似文献   

4.
Highly efficient nitrogen-fixing strains selected in the laboratory often fail to increase legume production in agricultural soils containing indigenous rhizobial populations because they cannot compete against these populations for nodule formation. We have previously demonstrated, with a Sinorhizobium meliloti PutA- mutant strain, that proline dehydrogenase activity is required for colonization and therefore for the nodulation efficiency and competitiveness of S. meliloti on alfalfa roots (J. I. Jiménez-Zurdo, P. van Dillewijn, M. J. Soto, M. R. de Felipe, J. Olivares, and N. Toro, Mol. Plant-Microbe Interact. 8:492-498, 1995). In this work, we investigated whether the putA gene could be used as a means of increasing the competitiveness of S. meliloti strains. We produced a construct in which a constitutive promoter was placed 190 nucleotides upstream from the start codon of the putA gene. This resulted in an increase in the basal expression of this gene, with this increase being even greater in the presence of the substrate proline. We found that the presence of multicopy plasmids containing this putA gene construct increased the competitiveness of S. meliloti in microcosm experiments in nonsterile soil planted with alfalfa plants subjected to drought stress only during the first month. We investigated whether this construct also increased the competitiveness of S. meliloti strains under agricultural conditions by using it as the inoculum in a contained field experiment at León, Spain. We found that the frequency of nodule occupancy was higher with inoculum containing the modified putA gene for samples that were analyzed after 34 days but not for samples that were analyzed later.  相似文献   

5.
The genetic structure of populations of the symbiotic nitrogen-fixing soil bacterium Rhizobium meliloti was examined by analysis of electrophoretically demonstrable allelic variation in 14 metabolic, presumably chromosomal, enzyme genes. A total of 232 strains were examined, most of which were isolated from southwest Asia, where there is an unsurpassed number of indigenous host species for R. meliloti. The collection consisted of 115 isolates recovered from annual species of Medicago in Syria, Turkey, and Jordan; 85 isolates cultured from two perennial species of Medicago (M. sativa [alfalfa] and M. falcata) in northern Pakistan and Nepal; and 32 isolates collected at various localities in North and South America, Europe, South Africa, New Zealand, and Australia, largely from M. sativa. Fifty distinctive multilocus genotypes (electrophoretic types [ETs]) were identified, and cluster analysis revealed two primary phylogenetic divisions separated at a genetic distance of 0.83. By the criterion of genetic differentiation conventionally applied in defining species limits among members of the family Enterobacteriaceae and certain other bacteria, the two primary divisions of R. meliloti represent distinct evolutionary species. Division A included 35 ETs represented by 209 strains from the eastern Mediterranean basin, northern Pakistan, Nepal, and various other localities worldwide. This division contained the nine commercial alfalfa inoculant strains examined. Division B included 15 ETs represented by 23 isolates, 21 of which were isolated from annual medic species growing in previously uninoculated soils in the eastern Mediterranean basin. The two remaining strains in division B, both representing the same ET, were isolated in the United States and Australia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The genetic structure of populations of the symbiotic nitrogen-fixing soil bacterium Rhizobium meliloti was examined by analysis of electrophoretically demonstrable allelic variation in 14 metabolic, presumably chromosomal, enzyme genes. A total of 232 strains were examined, most of which were isolated from southwest Asia, where there is an unsurpassed number of indigenous host species for R. meliloti. The collection consisted of 115 isolates recovered from annual species of Medicago in Syria, Turkey, and Jordan; 85 isolates cultured from two perennial species of Medicago (M. sativa [alfalfa] and M. falcata) in northern Pakistan and Nepal; and 32 isolates collected at various localities in North and South America, Europe, South Africa, New Zealand, and Australia, largely from M. sativa. Fifty distinctive multilocus genotypes (electrophoretic types [ETs]) were identified, and cluster analysis revealed two primary phylogenetic divisions separated at a genetic distance of 0.83. By the criterion of genetic differentiation conventionally applied in defining species limits among members of the family Enterobacteriaceae and certain other bacteria, the two primary divisions of R. meliloti represent distinct evolutionary species. Division A included 35 ETs represented by 209 strains from the eastern Mediterranean basin, northern Pakistan, Nepal, and various other localities worldwide. This division contained the nine commercial alfalfa inoculant strains examined. Division B included 15 ETs represented by 23 isolates, 21 of which were isolated from annual medic species growing in previously uninoculated soils in the eastern Mediterranean basin. The two remaining strains in division B, both representing the same ET, were isolated in the United States and Australia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Prosopis is a Mimosaceae legume tree indigenous to South America and not naturalized in Europe. In this work 18 rhizobial strains nodulating Prosopis alba roots were isolated from a soil in North Spain that belong to eight different randomly amplified polymorphic DNA groups phylogenetically related to Sinorhizobium medicae, Sinorhizobium meliloti and Rhizobium giardinii according to their intergenic spacer and 16S rRNA gene sequences. The nodC genes of isolates close to S. medicae and S. meliloti were identical to those of S. medicae USDA 1,037(T) and S. meliloti LMG 6,133(T) and accordingly all these strains were able to nodulate both alfalfa and Prosopis. These nodC genes were phylogenetically divergent from those of the isolates close to R. giardinii that were identical to that of R. giardinii H152(T) and therefore all these strains formed nodules in common beans and Prosopis. The nodC genes of the strains isolated in Spain were phylogenetically divergent from that carried by Mesorhizobium chacoense Pr-5(T) and Sinorhizobium arboris LMG 1,4919(T) nodulating Prosopis in America and Africa, respectively. Therefore, Prosopis is a promiscuous host which can establish symbiosis with strains carrying very divergent nodC genes and this promiscuity may be an important advantage for this legume tree to be used in reforestation.  相似文献   

8.
Abstract: Rhizobium meliloti strain GR4, which exhibits a highly competitive ability for alfalfa root nodule occupancy, was used in a field release experiment in Granada, Spain. In order to analyze the ecological impact of the GR4 release, we characterized the R. meliloti indigenous population of the field site by ERIC-(enterobacterial repetitive intergenic consensus) PCR and IS (insertion sequence) fingerprinting. Both fingerprinting methods resulted in the same grouping of the isolates. Data obtained were compared with a previous analysis by plasmid based sequence-specific PCR. Isolates belonging to the major infective group, as defined by dominant plasmid types, were shown to have identical or nearly identical ERIC and IS fingerprint patterns. Hence, we conclude that all three typing methods are suited to characterize the genetic structure of the field population. The possible impact of the introduction of strain GR4 was examined two years after its release in its original environment. No effect on the genetic structure of the indigenous R. meliloti field population was observed.  相似文献   

9.
Rhizobium meliloti competitiveness and the alfalfa agglutinin   总被引:13,自引:5,他引:8       下载免费PDF全文
We have isolated two types of isolates having identical colony morphologies from stock cultures of two different Rhizobium meliloti strains. One isolate was agglutinated at a high-dilution titer (HA, highly agglutinable) of the alfalfa agglutinin and was sensitive to phage F20, and the other was agglutinated at a lower agglutinin titer (LA) and was sensitive to phage 16B. All LA isolates from the original slant produced nodules on alfalfa earlier than did HA strains from the original slant. When these HA and LA strains were mixed and used as the inoculum in both vermiculite and field soil in the laboratory, LA strains were always the predominant strains recovered from the nodules. LA strains were obtained from HA cells by selection for resistance to phage F20, and HA strains were obtained from LA cells by selection for resistance to phage 16B. All of the strains with the HA phenotype that were derived from LA strains by phage selection had the nodulation properties of the HA strains from the original slant. Two classes of strains with the LA phenotype were obtained from HA cells by phage selection. One was identical to the original LA strains from the slant, and the other had the nodulation properties of the HA strains. Thus, we have shown that some cell surface properties change the nodulation abilities of R. meliloti strains and, furthermore, that specific phages can be used to enrich for more competitive rhizobia.  相似文献   

10.
The genome of the nitrogen-fixing soil bacterium Sinorhizobium meliloti does not possess genes for bioremediation of aromatic pollutants. It has the well-known ability to interact specifically with the leguminous alfalfa plant, Medicago sativa. Our previous work has shown enhanced degradation of the nitroaromatic compound 2,4-dinitrotoluene (DNT) when a plasmid containing degradative genes was introduced in it. In this study we report molecular evidence of the transfer of a polychlorinated biphenyl (PCB)-biodegradative plasmid pE43 to S. meliloti strain USDA 1936. Several standard analytical tests and plant growth chamber studies were conducted to test the ability of S. meliloti to degrade 2',3,4-PCB congener. Alfalfa plant alone was able to degrade 30% of PCBs compared with control. No enhanced dechlorination was noted when alfalfa plant was grown with wild-type S. meliloti, and when alfalfa plant was grown with the S. meliloti electrotransformants (genetically modified) dechlorination of PCBs was more than twice that when alfalfa plant was grown with wild-type S. meliloti. When alfalfa plant was grown with uncharacterized mixed culture (containing nodule formers), almost equally significant PCB degradation was observed. The significance of this work is that the naturally occurring nitrogen-fixing soil bacterium S. meliloti (genetically modified) has the ability to enhance fertility of soil in association with the leguminous alfalfa plant while simultaneously enhancing bioremediation of PCB-contaminated soils. Enhanced bioremediation of PCB and robust alfalfa plant growth was also noted when uncharacterized mixed cultures containing alfalfa plant nodule formers were used.  相似文献   

11.
12.
Four different low molecular weight (LMW) RNA profiles, designated I-IV, among 179 isolates from Medicago, Melilotus and Trigonella species growing in a field site in Northern Spain were identified. From sequence analysis of the 16S rRNA, atpD and recA genes as well as DNA-DNA hybridization analysis with representatives of each LMW RNA profile it was evident that isolates with LMW RNA profiles I and II belonged to Sinorhizobium meliloti and those displaying profiles III and IV to Sinorhizobium medicae. Therefore, two distinct LMW RNA electrophoretic mobility profiles were found within each of these two species. Collectively, LMW RNA profiles I and II (identified as S. meliloti) were predominant in Melilotus alba, Melilotus officinalis and Medicago sativa. Profiles III and IV (identified as S. medicae) were predominant in Melilotus parviflora, Medicago sphaerocarpa, Medicago lupulina and Trigonella foenum-graecum. All the four LMW RNA profiles were identified among isolates from Trigonella monspelliaca nodules. These results revealed a different specificity by the hosts of the alfalfa cross-inoculation group towards the two bacterial species found in this study.  相似文献   

13.
The diversity of temperate bacteriophages was examined in 32 Mannheimia haemolytica, six Mannheimia glucosida and four Pasteurella trehalosi isolates. Phage particles were induced and identified by electron microscopy in 24 (75%) M. haemolytica isolates, but in only one (17%) M. glucosida and one (25%) P. trehalosi isolate. The M. haemolytica phages were relatively diverse as seven Siphoviridae, 15 Myoviridae and two Podoviridae-like phages were identified; the Myoviridae-type phages also exhibited structural variation of their tails. The bacteriophages induced in M. glucosida and P. trehalosi were of the Myoviridae type. Restriction endonuclease (RE) analysis identified nine distinct RE types among the M. haemolytica bacteriophages, providing further evidence of their relative diversity. A limited number of phages caused plaques on indicator strains and the phages exhibited a narrow host range. A subgroup of 11 bovine serotype A1 and A6 isolates contained Myoviridae-type phages of the same RE type (type A), but these differed in their abilities to infect and form plaques on the same panel of indicator strains. A P2-like phage (phiPHL213.1), representative of the RE type A phages, was identified from the incomplete M. haemolytica genome sequence. The phiPHL213.1 genome contains previously unidentified genes and represents a new member of the P2 phage family.  相似文献   

14.
A phage typing system was used to evaluate the composition of indigenous populations of Rhizobium meliloti inhabiting nodules of Medicago sativa cultivars grown with and without inoculation at two field sites during 1983 and 1984. Soil at both locations contained established populations of R. meliloti at planting. Analysis of 1,920 nodule isolates revealed 55 unique phage types of indigenous R. meliloti at one site and 65 indigenous types at the other location. The distributions of phage types differed markedly between locations. At one site, the nodule population was dominated by two phage types; seven others occurred consistently but at lower frequency, and the remainder were encountered infrequently. No indigenous types predominated at the other location, although nine occurred more frequently than the remaining types. Indigenous R. meliloti predominated in nodules from inoculated plots at both sites, with inoculant recovery varying between 10 and 38% in each of two years. The frequency of occurrence of particular phage types at one location was significantly influenced by both M. sativa cultivar and inoculation. At this location, the interaction of cultivar and inoculation on the incidence of phage types suggests that the presence of an inoculant strain differentially affected nodule occupancy of M. sativa cultivars by members of the indigenous R. meliloti population. At both sites, the frequency of specific phage types differed between years. The data emphasize the importance of understanding the ecology and characteristics of indigenous Rhizobium populations as a prerequisite for elucidating problems of inoculant establishment and persistence in competitive situations.  相似文献   

15.
A total of 354 indigenous bradyrhizobia were isolated from soybean nodules collected from five major crop grown regions. Host-specific 12 phages, each active on particular strains were selected. Factors, which influence the interaction between the host and phage, were examined. Four different types of plaques were detected. Nearly 17% of isolates were found resistant to all phages. Phage sensitivity patterns revealed a total of 32 distinct phage genotype groups. Different set of phage combinations expressed variation in specificity for parasitizing against particular group of rhizobia. Distributions of isolates in each phage types differed markedly between regions. Interestingly, nine strains belonging to phage group 16 exhibited high ex planta nitrogenase activity in culture. However, no correlation could be established between high ex planta nitrogenase activity and their symbiotic effectiveness with soybean cultivars. Soybean cv. JS335 showed relatively superior performance than Bragg and Lee with indigenous bradyrhizobial strains. Phage typing revealed the existence of large genetic diversity among native rhizobia and selection of the superior bradyrhizobial strains can also be possible for a given soil-climate-cultivar complex.  相似文献   

16.
Transfer of an IncP plasmid carrying the Rhizobium meliloti nodFE, nodG, and nodH genes to Rhizobium trifolii enabled R. trifolii to nodulate alfalfa (Medicago sativa), the normal host of R. meliloti. Using transposon Tn5-linked mutations and in vitro-constructed deletions of the R. meliloti nodFE, nodG, and nodH genes, we showed that R. meliloti nodH was required for R. trifolii to elicit both root hair curling and nodule initiation on alfalfa and that nodH, nodFE, and nodG were required for R. trifolii to elicit infection threads in alfalfa root hairs. Interestingly, the transfer of the R. meliloti nodFE, nodG, and nodH genes to R. trifolii prevented R. trifolii from infecting and nodulating its normal host, white clover (Trifolium repens). Experiments with the mutated R. meliloti nodH, nodF, nodE, and nodG genes demonstrated that nodH, nodF, nodE, and possibly nodG have an additive effect in blocking infection and nodulation of clover.  相似文献   

17.
A mozzarella cheese factory using an undefined, milk-derived Streptococcus thermophilus starter system was monitored longitudinally for 2 years to determine whether the diversity of the resident bacteriophage population arose from environmental sources or from genetic changes in the resident phage in the factory. The two hypotheses led to different predictions about the genetic diversity of the phages. With respect to host range, 12 distinct phage types were observed. With two exceptions, phages belonging to different lytic groups showed clearly distinct restriction patterns and multiple isolates of phages showing the same host range exhibited identical or highly related restriction patterns. Sequencing studies in a conserved region of the phage genome revealed no point mutations in multiple isolates of the same phage type, while up to 12% nucleotide sequence diversity was observed between the different phage types. This diversity is as large as that between the most different sequences from phages in our collection. These observations make unlikely a model that postulates a single phage invasion event and diversification of the phage during its residence in the factory. In the second stage of our factory study, a defined starter system was introduced that could not propagate the resident factory phage population. Within a week, three new phage types were observed in the factory while the resident phage population was decreased but not eliminated. Raw milk was the most likely source of these new phages, as phages with identical host ranges and restriction patterns were isolated from raw milk delivered to the factory during the intervention trial. Apparently, all of the genetic diversity observed in the S. thermophilus phages isolated during our survey was already created in their natural environment. A better understanding of the raw-milk ecology of S. thermophilus phages is thus essential for successful practical phage control.  相似文献   

18.
Leguminous plants and bacteria from the family Rhizobiaceae form a symbiotic relationship, which culminates in novel plant structures called root nodules. The indeterminate symbiosis that forms between Sinorhizobium meliloti and alfalfa requires biosynthesis of Nod factor, a beta-1,4-linked lipochitooligosaccharide that contains an essential 6-O-sulfate modification. S. meliloti also produces sulfated cell surface polysaccharides, such as lipopolysaccharide (LPS). The physiological function of sulfated cell surface polysaccharides is unclear, although mutants of S. meliloti with reduced LPS sulfation exhibit symbiotic abnormalities. Using a bioinformatic approach, we identified a homolog of the S. meliloti carbohydrate sulfotransferase, LpsS, in Mesorhizobium loti. M. loti participates in a determinate symbiosis with the legume Lotus japonicus. We showed that M. loti produces sulfated forms of LPS and capsular polysaccharide (KPS). To investigate the physiological function of sulfated polysaccharides in M. loti, we identified and disabled an M. loti homolog of the sulfate-activating genes, nodPQ, which resulted in undetectable amounts of sulfated cell surface polysaccharides and a cysteine auxotrophy. We concomitantly disabled an M. loti cysH homolog, which disrupted cysteine biosynthesis without reducing cell surface polysaccharide sulfation. Our experiments demonstrated that the nodPQ mutant, but not the cysH mutant, showed an altered KPS structure and a diminished ability to elicit nodules on its host legume, Lotus japonicus. Interestingly, the nodPQ mutant also exhibited a more rapid growth rate and appeared to outcompete wild-type M. loti for nodule colonization. These results suggest that sulfated cell surface polysaccharides are required for optimum nodule formation but limit growth rate and nodule colonization in M. loti.  相似文献   

19.
Nineteen virulent bacteriophages for fast- and slow-growing rhizobia were isolated. Most of the phage isolates were of two morphological types, and these showed specificity for either the fast- or the slow-growing rhizobia. The ecological distribution, morphology, and host range of the phages is presented. Classification of lotus rhizobia is discussed on the basis of phage typing.  相似文献   

20.
Insertion sequence (IS) hybridization was used to define the structure of a population of Rhizobium meliloti isolated directly from soil and from nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown under controlled conditions and inoculated with a suspension of the same soil. The detection of R. meliloti isolated from soil on agar plates was facilitated by use of a highly species specific DNA probe derived from ISRm5. All R. meliloti obtained directly from soil proved to be symbiotic (i.e. nodulated and fixed nitrogen with alfalfa). Analysis of 293 R. meliloti isolates revealed a total of 17 distinct IS genotypes of which 9, 9 and 15 were from soil, M. alba and M. sativa, respectively; 8 genotypes were common to soil and both plant species. The frequency of R. meliloti genotypes from soil differed markedly from that sampled from nodules of both legume species: 5 genotypes represented about 90% of the isolates from soil whereas a single genotype predominated among isolates from nodules accounting for more than 55% of the total. The distribution of genotypes differed between M. sativa and M. alba indicating species variation in nodulation preferences for indigenous R. meliloti. The data are discussed in the context of competition for nodulation of the host plant and the selection of Rhizobium strains for use in legume inoculants. This study has ecological implications and suggests that the composition of R. meliloti populations sampled by the traditionally used host legume may not be representative of that actually present in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号