首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidant-induced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594-DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure of CGN to a flux of peroxynitrite as low as 0.5-1μM/min during 30min (achieved with 0.1mM SIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca(2+) channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca(2+) dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca(2+) concentration response to the L-VOCC's agonist FPL-64176 and to the L-VOCC's blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca(2+) influx through L-VOCC. Combined analysis of cytosolic Ca(2+) concentration and G-actin/F-actin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.  相似文献   

2.
We have recently observed that small GTP-binding proteins are important for mediation of store-mediated Ca(2+) entry in human platelets through the reorganization of the actin cytoskeleton. Because it has been shown in platelets and other cells that small GTP-binding proteins regulate the activity of phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase, whose products, phosphoinositides, play a key role in the reorganization of the actin cytoskeleton, we have investigated the role of these lipid kinases in store-mediated Ca(2+) entry. Treatment of platelets with LY294002, an inhibitor of phosphatidylinositol 3- and phosphatidylinositol 4-kinases, resulted in a concentration-dependent inhibition of Ca(2+) entry stimulated by thapsigargin or the physiological agonist, thrombin. In addition, wortmannin, another inhibitor of these kinases, which is structurally unrelated to LY294002, significantly reduced store-mediated Ca(2+) entry. The inhibitory effect of LY294002 was not mediated either by blockage of Ca(2+) channels or by modification of membrane potential. LY294002 inhibited actin polymerization stimulated by thrombin or thapsigargin. These results indicate that both phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase are required for activation of store-mediated Ca(2+) entry in human platelets and that the mechanism could involve the reorganization of the actin cytoskeleton.  相似文献   

3.
A major pathway for stimulated Ca(2+) entry in non-excitable cells is activated following depletion of intracellular Ca(2+) stores. Secretion-like coupling between elements in the plasma membrane (PM) and Ca(2+) stores has been proposed as the most likely mechanism to activate this store-mediated Ca(2+) entry (SMCE) in several cell types. Here we identify two mechanisms for SMCE in human platelets activated by depletion of two independent Ca(2+) pools, which are differentially modulated by the actin cytoskeleton. Ca(2+) entry induced by depletion of a 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ)-sensitive pool is increased by disassembly of the actin cytoskeleton and that induced by a TBHQ-insensitive pool is reduced. Stabilization of the actin cytoskeleton prevented Ca(2+) entry by both mechanisms. We propose that the membrane-associated actin network prevents constitutive Ca(2+) entry via both pathways. Reorganization of the actin cytoskeleton permits the activation of Ca(2+) entry via both mechanisms, but only SMCE activated by the TBHQ-insensitive pool requires new actin polymerization, which may support membrane trafficking toward the PM.  相似文献   

4.
5.
Harper AG  Sage SO 《Cell calcium》2007,42(6):606-617
We have previously demonstrated a role for the reorganization of the actin cytoskeleton in store-operated calcium entry (SOCE) in human platelets and interpreted this as evidence for a de novo conformational coupling step in SOCE activation involving the type II IP(3) receptor and the platelet hTRPC1-containing store-operated channel (SOC). Here, we present evidence challenging this model. The actin polymerization inhibitors cytochalasin D or latrunculin A significantly reduced Ca2+ but not Mn2+ or Na+ entry into thapsigargin (TG)-treated platelets. Jasplakinolide, which induces actin polymerization, also inhibited Ca2+ but not Mn2+ or Na+ entry. However, an anti-hTRPC1 antibody inhibited TG-evoked entry of all three cations, indicating that they all permeate an hTRPC1-containing store-operated channel (SOC). These results indicate that the reorganization of the actin cytoskeleton is not involved in SOC activation. The inhibitors of the Na+/Ca2+ exchanger (NCX), KB-R7943 or SN-6, caused a dose-dependent inhibition of Ca2+ but not Mn2+ or Na+ entry into TG-treated platelets. The effects of the NCX inhibitors were not additive with those of actin polymerization inhibitors, suggesting a common point of action. These results indicate a role for two Ca2+ permeable pathways activated following Ca2+ store depletion in human platelets: A Ca2+-permeable, hTRPC1-containing SOC and reverse Na+/Ca2+ exchange, which is activated following Na+ entry through the SOC and requires a functional actin cytoskeleton.  相似文献   

6.
STIM1 (stromal interaction molecule 1) has recently been proposed to communicate the intracellular Ca(2+) stores with the plasma membrane to mediate store-operated Ca(2+) entry. Here we describe for the first time that Ca(2+) store depletion stimulates rapid STIM1 surface expression and association with endogenously expressed human canonical TRP1 (hTRPC1) independently of rises in cytosolic free Ca(2+) concentration. These events require the support of the actin cytoskeleton in human platelets, as reported for the coupling between type II inositol 1,4,5-trisphosphate receptor in the Ca(2+) stores and hTRPC1 in the plasma membrane, which has been suggested to underlie the activation of store-operated Ca(2+) entry in these cells. Electrotransjection of cells with anti-STIM1 antibody, directed toward the N-terminal sequence that includes the Ca(2+)-binding region, prevented the migration of STIM1 toward the plasma membrane, the interaction between STIM1 and hTRPC1, the coupling between hTRPC1 and type II inositol 1,4,5-trisphosphate receptor, and reduced store-operated Ca(2+) entry. These findings provide evidence for a role of STIM1 in the activation of store-operated Ca(2+) entry probably acting as a Ca(2+) sensor.  相似文献   

7.
The consequences of purinoceptor activation on calcium signalling, inositol phosphate metabolism, protein secretion and the actin cytoskeleton were demonstrated in the WRK-1 cell line. Extracellular ATP was used as a secretagogue to induce a rise in intracellular Ca(2+) concentration ([Ca(2+)](i)), acting via P2x purinergic receptors, which causes actin skeleton disaggregation and protein secretion. ATP bound specifically to purinergic receptors, with Ki of 0.8 microM. The magnitude order for binding of different nucleotides was alpha beta-Met-ATP >or= dATPalphaS > ATP >or= ADP > UTP > AMP > suramin. No increase in inositol phosphates (IPs) was observed after ATP application suggesting that the purinergic sites in WRK-1 cells are not of a P2y type. ATP (1-100 microM) caused a concentration-dependent increase in [Ca(2+)](i)(EC(50)= 30 microM). The responses were reproducible without any desensitization over several applications. The response to ATP was abolished when extracellular calcium ([Ca(2+)](e)) was reduced to 100 nM. A non-specific purinergic antagonist, suramin, reversibly inhibited the ATP-response suggesting that ATP is able to bind to P2x purinergic sites to trigger Ca(2+) entry and increase of [Ca(2+)](i). ATP induced a concentration-dependent disaggregation of actin and exocytotic release of proteins both, which were dependent upon [Ca(2+)](e). Similarly, alpha,beta-Met-ATP, a potent P2x agonist also stimulated Ca(2+) mobilization, actin network destructuration, and protein release. In the isolated rat neurohypophysial nerve terminals, ATP was shown to act as a physiological stimulus for vasopressin release via Ca(2+) entry through a P2x receptor [6]. Here, we show that in these nerve terminals, ATP is also able to induce actin disaggregation by a Ca(2+) dependent mechanism. Thus, actin cytoskeleton alterations induced by ATP through activation of P2x receptors could be a prelude to exocytosis.  相似文献   

8.
We have studied the role of the actin cytoskeleton in bombesin-induced inositol 1,4,5-trisphosphate (IP(3))-production and Ca(2+)release in the pancreatic acinar tumour cell line AR4-2J. Intracellular and extracellular free Ca(2+)concentrations were measured in cell suspensions, using Fura-2. Disruption of the actin cytoskeleton by pretreatment of the cells with latrunculin B (10 microM), cytochalasin D (10 microM) or toxin B from Clostridium difficile (20 ng/ml) for 5-29 h led to inhibition of both, bombesin-stimulated IP(3)-production and Ca(2+)release. The toxins had no effect on binding of bombesin to its receptor, on Ca(2+)uptake into intracellular stores and on resting Ca(2+)levels. Ca(2+)mobilization from intracellular stores, induced by thapsigargin (100 nM) or IP(3)(1 microM) was not impaired by latrunculin B. In latrunculin B-pretreated cells inhibition of both, bombesin-stimulated IP(3)- production and Ca(2+)release was partly suspended in the presence of aluminum fluoride, an activator of G-proteins. Aluminum fluoride had no effect on basal IP(3)and Ca(2+)levels of control and toxin-pretreated cells. We conclude that disruption of the actin cytoskeleton impairs coupling of the bombesin receptor to its G-protein, resulting in inhibition of phospholipase C-activity with subsequent decreases in IP(3)-production and Ca(2+)release.  相似文献   

9.
It was investigated why the fMLP-stimulated respiratory burst in human neutrophils was enhanced by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a considered calmodulin antagonist, at lower concentration but inhibited at higher concentration. Flow cytometric analysis on binding of the receptor to the fluorescence-labeled formyl peptide and the polymerization of actin in cells showed that the drug inhibited actin polymerization and promoted expression of the fMLP receptors on cell membrane at lower concentration, while promoted the actin polymerization and depressed the receptor expression at higher concentration. As intracellular Ca(2+) ([Ca(2+)](i)) is elevated, polymerization of actin decreases and the receptor expression increases. At normal physiological and two moderately high intracellular calcium levels, the dual effect of W-7 became less significant as [Ca(2+)](i) was elevated indicating that the dual effect is calcium-dependent. Under two extreme conditions that the intracellular calcium was either depleted or highly elevated, the dual effect disappeared but only an inhibitory effect on actin polymerization was observed. Colchicine and taxol study showed that disruption or stabilization of microtubules had no effect on formyl peptide receptor expression. The results suggest that W-7 primes the fMLP stimulation by direct action on actin leading to breakdown of microfilaments and more expression of formyl peptide receptors, and inhibits the stimulation by indirect action on actin through inactivation of some Ca(2+)-dependent proteins resulting in assembly of actin into microfilaments. Which action is favorable depends on the drug concentration.  相似文献   

10.
Ionomycin is a Ca(2+)-selective ionophore that is widely used to increase intracellular Ca(2+) levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca(2+) levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca(2+) increase. The ionomycin-induced Ca(2+) rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca(2+) response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation.  相似文献   

11.
Lymphocyte signaling and activation leads to the influx of extracellular Ca(2+) via the activation of Ca(2+) release activated Ca(2+) (CRAC) channels in the plasma membrane. Activation of CRAC channels occurs following emptying of the endoplasmic reticulum intracellular Ca(2+) stores. One model to explain the coupling of store-emptying to CRAC activation is the secretion-like conformational coupling model. This model proposes that store depletion increases junctions between the endoplasmic reticulum and the plasma membrane in a manner that could be regulated by the cortical actin cytoskeleton. Here, we show that stabilization or depolymerization of the actin cytoskeleton failed to affect CRAC activation. We therefore conclude that rearrangement of the actin cytoskeleton is dispensable for store-operated Ca(2+) entry in T-cells.  相似文献   

12.
The adhesion receptor CD-31 is expressed on neutrophils and endothelial cells and participates in transendothelial migration of neutrophils. Although necessary, information on CD-31-induced signaling and its influence on the shape-forming actin network is scarce. Here, we found that antibody engagement of CD-31 on suspended neutrophils triggered a prompt intracellular Ca(2+) signal, providing the cells had been primed with a chemotactic factor. Inhibition of Src-tyrosine kinases blocked this Ca(2+) signal, but not a fMet-Leu-Phe-induced Ca(2+) signal. Despite the ability of fMet-Leu-Phe to activate Src-tyrosine kinases, it did not per se induce tyrosine phosphorylation of CD-31. However, fMet-Leu-Phe did enable such a phosphorylation following an antibody-induced engagement of CD-31. This clustering also triggered a Ca(2+)-dependent depolymerization of actin and, surprisingly enough, a simultaneous polymerization. The ability of CD-31 to signal dynamic alterations in the cytoskeleton, particularly the Ca(2+)-induced actin depolymerization, further explains how neutrophils can squeeze themselves out between adjacent endothelial cells.  相似文献   

13.
Agonists elevate the cytosolic calcium concentration in human platelets via a receptor-operated mechanism, involving both Ca(2+) release from intracellular stores and subsequent Ca(2+) entry, which can be inhibited by platelet inhibitors, such as prostaglandin E(1) and nitroprusside which elevate cAMP and cGMP, respectively. In the present study we investigated the mechanisms by which cAMP and cGMP modulate store-mediated Ca(2+) entry. Both prostaglandin E(1) and sodium nitroprusside inhibited thapsigargin-evoked store-mediated Ca(2+) entry and actin polymerization. However, addition of these agents after induction of store-mediated Ca(2+) entry did not affect either Ca(2+) entry or actin polymerization. Furthermore, prostaglandin E(1) and sodium nitroprusside dramatically inhibited the tyrosine phosphorylation induced by depletion of the internal Ca(2+) stores or agonist stimulation without affecting the activation of Ras or the Ras-activated phosphatidylinositol 3-kinase or extracellular signal-related kinase (ERK) pathways. Inhibition of cyclic nucleotide-dependent protein kinases prevented inhibition of agonist-evoked Ca(2+) release but it did not have any effect on the inhibition of Ca(2+) entry or actin polymerization. Phenylarsine oxide and vanadate, inhibitors of protein-tyrosine phosphatases prevented the inhibitory effects of the cGMP and cAMP elevating agents on Ca(2+) entry and actin polymerization. These results suggest that Ca(2+) entry in human platelets is directly down-regulated by cGMP and cAMP by a mechanism involving the inhibition of cytoskeletal reorganization via the activation of protein tyrosine phosphatases.  相似文献   

14.
The nature of the mechanism underlying store-mediated Ca(2+) entry has been investigated in human platelets through a combination of cytoskeletal modifications. Inhibition of actin polymerization by cytochalasin D or latrunculin A had a biphasic time-dependent effect on Ca(2+) entry, showing an initial potentiation followed by inhibition of Ca(2+) entry. Moreover, addition of these agents after induction of store-mediated Ca(2+) entry inhibited the Ca(2+) influx mechanism. Jasplakinolide, which reorganizes actin filaments into a tight cortical layer adjacent to the plasma membrane, prevented activation of store-mediated Ca(2+) entry but did not modify this process after its activation. In addition, jasplakinolide prevented cytochalasin D-induced inhibition of store-mediated Ca(2+) entry. Calyculin A, an inhibitor of protein serine/threonine phosphatases 1 and 2 which activates translocation of existing F-actin to the cell periphery without inducing actin polymerization, also prevented activation of store-mediated Ca(2+) entry. Finally, inhibition of vesicular transport with brefeldin A inhibited activation of store-mediated Ca(2+) entry but did not alter this mechanism once initiated. These data suggest that store-mediated Ca(2+) entry in platelets may be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, which shows close parallels to the events mediating secretion.  相似文献   

15.
Serotonin or 5-hydroxytryptamine (5-HT) influences numerous functions in the gastrointestinal tract. We previously demonstrated that 5-HT treatment of Caco-2 cells inhibited Na(+)/H(+) exchangers (NHE) and Cl(-)/OH(-) exchange activities via distinct signaling mechanisms. Since regulation of several ion transporters such as NHE3 is influenced by intact cytoskeleton, we hypothesized that 5-HT modifies actin cytoskeleton and/or brush-border membrane architecture via involvement of signaling pathways. Ultrastructural analysis showed that 5-HT (0.1 muM, 1 h) treatment of Caco-2 cells caused the apical membrane to assume a convex dome shape that was associated with shortening of microvilli. To examine whether these cellular architecture changes are cytoskeleton driven, we analyzed actin cytoskeleton by fluorescence microscopy. 5-HT induced basal stress fibers with prominent cortical actin filaments via 5-HT3 and 5-HT4 receptor subtypes. This induction was partially attenuated by chelation of intracellular Ca(2+) and PKCalpha inhibition (Go6976). In vitro assays revealed that PKCalpha interacted with actin and this association was increased by 5-HT. Our data provide novel evidence that 5-HT-induced signaling via 5-HT3/4 receptor subtypes to cause Ca(2+) and PKCalpha-dependent regulation of actin cytoskeleton may play an important role in modulation of ion transporters that contribute to pathophysiology of diarrheal conditions associated with elevated levels of 5-HT.  相似文献   

16.
17.
Intracellular Ca(2+) regulates the cellular iron uptake in K562 cells   总被引:1,自引:0,他引:1  
Ci W  Li W  Ke Y  Qian ZM  Shen X 《Cell calcium》2003,33(4):257-266
Fluorescence quenching was used to study the kinetics of the transferrin receptor (TfR)-mediated iron uptake in the calcein-loaded K562 cells. It was found that elevation of intracellular free Ca(2+) ([Ca(2+)](i)) by thapsigargin (TG) speeds up the initial rate of iron uptake and increases the overall capacity of the cells in taking up iron. Depletion of intracellular Ca(2+) or complete chelation of extracellular Ca(2+) results in complete inhibition of the iron uptake in cells. To gain insight into molecular mechanism, IANBD-labeled transferrin (Tf) and microscopic fluorescence imaging were used to observe the endocytosis and recycling of the Tf-TfR complex in single live cells. The study showed that the preincubation of cells with TG or phorbol myristate acetate (PMA), the direct activator of protein kinase C (PKC), accelerated the endocytosis and recycling of the complex in a dose-dependent manner. W-7, the calmodulin antagonist, and GF109203X, a selected cell-permeant inhibitor of PKC, can reverse the acceleration. Analysis of actin polymerization in controlled, [Ca(2+)](i)-elevated and W-7-treated cells revealed that the actin polymerization is enhanced as [Ca(2+)](i) is raised, but reduced by W-7. The results suggest that the regulation of actin polymerization by intracellular Ca(2+) may play a central role in Ca(2+)-dependent iron uptake.  相似文献   

18.
Nuclear Ca2+ regulates cardiomyocyte function.   总被引:1,自引:0,他引:1  
In the heart, cytosolic Ca(2+) signals are well-characterized events that participate in the activation of cell contraction. In contrast, nuclear Ca(2+) contribution to cardiomyocyte function remains elusive. Here, we examined functional consequences of buffering nuclear Ca(2+) in neonatal cardiomyocytes. We report that cardiomyocytes contain a nucleoplasmic reticulum, which expresses both ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor (InsP(3)R), providing a possible way for active regulation of nuclear Ca(2+). Adenovirus constructs encoding the Ca(2+) buffer protein parvalbumin were targeted to the nucleus with a nuclear localization signal (Ad-PV-NLS) or to the cytoplasm with a nuclear exclusion signal (Ad-PV-NES). A decrease in the amplitude of global Ca(2+) transients and RyR-II expression, as well as an increase in cell beating rate were observed in Ad-PV-NES and Ad-PV-NLS cells. When nuclear Ca(2+) buffering was imposed nuclear enlargement, increased calcineurin expression, NFAT translocation to the nucleus and subcellular redistribution of atrial natriuretic peptide were observed. Furthermore, prolongation of action potential duration occurred in adult ventricular myocytes. These results suggest that nuclear Ca(2+) levels underlie the regulation of specific protein targets and thereby modulate cardiomyocyte function. The local nuclear Ca(2+) signaling and the structures that control it constitute a novel regulatory motif in the heart.  相似文献   

19.
Using large clostridial cytotoxins as tools, the role of Rho GTPases in activation of RBL 2H3 hm1 cells was studied. Clostridium difficile toxin B, which glucosylates Rho, Rac, and Cdc42 and Clostridium sordellii lethal toxin, which glucosylates Rac and Cdc42 but not Rho, inhibited the release of hexosaminidase from RBL cells mediated by the high affinity antigen receptor (FcepsilonRI). Additionally, toxin B and lethal toxin inhibited the intracellular Ca(2+) mobilization induced by FcepsilonRI-stimulation and thapsigargin, mainly by reducing the influx of extracellular Ca(2+). In patch clamp recordings, toxin B and lethal toxin inhibited the calcium release-activated calcium current by about 45%. Calcium release-activated calcium current, the receptor-stimulated Ca(2+) influx, and secretion were inhibited neither by the Rho-ADP-ribosylating C3-fusion toxin C2IN-C3 nor by the actin-ADP-ribosylating Clostridium botulinum C2 toxin. The data indicate that Rac and Cdc42 but not Rho are not only involved in late exocytosis events but are also involved in Ca(2+) mobilization most likely by regulating the Ca(2+) influx through calcium release-activated calcium channels activated via FcepsilonRI receptor in RBL cells.  相似文献   

20.
Intracellular calcium (Ca(2+)) homeostasis is very strictly regulated, and the activation of G-protein-coupled receptor (GPCR) can cause two different calcium changes, intracellular calcium release, and calcium influx. In this study, we investigated the possible role of lysophosphatidic acid (LPA) on GPCR-induced Ca(2+) signaling. The addition of exogenous LPA induced dramatic Ca(2+) influx but not intracellular Ca(2+) release in U937 cells. LPA-induced Ca(2+) influx was not affected by pertussis toxin and phospholipase C inhibitor (U73122), ruling out the involvement of pertussis toxin-sensitive G-proteins, and phospholipase C. Stimulation of U937 cells with Trp-Lys-Tyr-Met-Val-D-Met (WKYMVm), which binds to formyl peptide receptor like 1, enhanced phospholipase A(2) and phospholipase D activation, indicating LPA formation. The inhibition of LPA synthesis by phospholipase A(2)-specific inhibitor (MAFP) or n-butanol significantly inhibited WKYMVm-induced Ca(2+) influx, suggesting a crucial role for LPA in the process. Taken together, we suggest that LPA mediates WKYMVm-induced Ca(2+) influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号