首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来,超声(ultrasound, US)、CT冠状动脉造影(CT coronary angiography, CCTA)、血管内超声(intravenous ultrasound,IVUS)、光学相干断层成像(optical coherence tomography, OCT)、多层螺旋CT成像(multi-slice computed tomography, MSCT)、单光子发射计算机断层成像(single-photon emission computed tomography, SPECT)、正电子发射计算机断层成像(positron emission computed tomography, PET)及心脏磁共振(cardiac magnetic resonance, CMR)等多种心血管成像技术能够提供与冠脉病变及心肌形态和功能相关的解剖学、血流动力学、细胞生物学及病理生理学等方面的重要信息,在缺血性心肌病的临床诊疗及预后评估中发挥着日益重要的作用。然而,如何恰当选择的多模态心血管影像技术是临床医师面临的一大难题。因此,本文在归纳总结主要心血管成像技术临床应用进展的基础上,对多模态心血管影像学在缺血性心肌病相关的冠脉解剖与斑块成像、心肌功能、心肌灌注及心肌活性显像中的临床应用价值进行综述。旨在帮助临床医师客观认识各种成像技术的优势与不足,从而制定最优化的选择方案。  相似文献   

2.
A new nuclear magnetic resonance property of lung   总被引:1,自引:0,他引:1  
Inflated lung has a nuclear magnetic resonance (NMR) free-induction decay (FID) which is short compared with that of collapsed lung and those of other body tissues. An almost identically short FID is obtained from a slurry of 5-micron alumina particles in water. Interfaces between air and water in lung and between alumina and water in the slurry appear to be the source of spatial internal magnetic inhomogeneities which produce NMR line broadening and the short FID. Paired images that included lung, taken with paired symmetric and asymmetric NMR spin-echo sequences, permit the generation of an image, by subtraction, of the lung isolated from surrounding tissue. These new lung images are neither proton density, T1 (spin-lattice relaxation time), nor T2 (spin-spin relaxation time) images. They complement current NMR images and provide information about regional lung inflation. This previously unrecognized NMR property of lung tissue has potential application in NMR imaging, in quantitative determination of lung water and its distribution, and in the quantitation of regional lung inflation.  相似文献   

3.
New concepts regarding the assessment of ischemic myocardial injuries have been addressed in this Minireview using magnetic resonance imaging (MRI). MRI, with its different techniques, brings not only anatomic, but also physiologic, information on ischemic heart disease. It has the ability to measure identical parameters in preclinical and clinical studies. MRI techniques provide the ideal package for repeated and noninvasive assessment of myocardial anatomy, viability, perfusion, and function. MR contrast agents can be applied in a variety of ways to improve MRI sensitivity for detecting and assessing ischemically injured myocardium. With MR contrast agents protocol, it becomes possible to identify ischemic, acutely infarcted, and peri-infarcted myocardium in occlusive and reperfused infarctions. Necrosis specific and nonspecific extracellular contrast-enhanced MRI has been used to assess myocardial viability. Contrast-enhanced perfusion MRI can explore the disturbances in large (angiography) and small coronary arteries (myocardial perfusion) as the underlying cause of myocardial dysfunction. Perfusion MRI has been used to measure myocardial perfusion (ml/min/g) and to demonstrate the difference in transmural myocardial blood flow. Information on no-reflow phenomenon is derived from dynamic changes in regional signal intensity after bolus injection of MR contrast agents. Another development is the near future availability of blood pool MR contrast agents. These agents are able to assess microvascular permeability and integrity and are advantageous in MR angiography (MRA) due to their persistence in the blood. Noncontrast-enhanced MRI such as cine MRI at rest/stress, sodium MRI, and MR spectroscopy also have the potential to noninvasively assess myocardial viability in patients. Futuristic applications for MRI in the heart will focus on identifying coronary artery disease at an early stage and the beneficial effects of new therapeutic agents such as intra-arterial gene therapy. MR techniques will have great future in the drug discovery process and in testing the effects of drugs on myocardial biochemistry, physiology, and morphology. Molecular imaging is going to bloom in this decade.  相似文献   

4.
左房形态和功能既可反映机体的生理状态,也可反映其病理状态,左房形态和功能异常改变是冠心病、高血压、心血管硬化、中风等诸多心血管疾病的早期表现之一,是心血管死亡、心肌梗死、卒中、心力衰竭等不良心血管事件的危险因素之一,与这类疾病的预后密切相关,因而准确、有效评估左房形态和功能在不良心血管事件的诊疗及预后评估中意义重大。采用超声心动图评价左房形态和功能具有无创、实时高效、价格低廉及可重复性高等优点,临床上应用非常广泛。随着超声技术的进步,除二维超声心动图、彩色多普勒超声心动图等常规超声技术外,组织多普勒显像(TDI)技术、由TDI派生出来的应变及应率显像技术、实时三维超声心动图(RT-3DE)、二维斑点追踪成像(2D-STI)技术、三维斑点追踪成像(3D-STI)技术等新型超声技术也逐渐应用于左房形态、功能的评价中,然而不同的超声技术评价左房形态和功能仍有一定的不足之处,本研究就不同超声心动图评价左房形态和功能的临床应用及研究进展进行综述。  相似文献   

5.
Aziz H  Zaas A  Ginsburg GS 《Genomic Medicine》2007,1(3-4):105-112
Whole blood gene expression profiling has the potential to be informative about dynamic changes in disease states and to provide information on underlying disease mechanisms. Having demonstrated proof of concept in animal models, a number of studies have now tried to tackle the complexity of cardiovascular disease in human hosts to develop better diagnostic and prognostic indicators. These studies show that genomic signatures are capable of classifying patients with cardiovascular diseases into finer categories based on the molecular architecture of a patient's disease and more accurately predict the likelihood of a cardiovascular event than current techniques. To highlight the spectrum of potential applications of whole blood gene expression profiling approach in cardiovascular science, we have chosen to review the findings in a number of complex cardiovascular diseases such as atherosclerosis, hypertension and myocardial infarction as well as thromboembolism, aortic aneurysm, and heart transplant.  相似文献   

6.
Systolic and diastolic dysfunction of the left ventricle (LV) is a hallmark of most cardiac diseases. In vivo assessment of heart function in animal models, particularly mice, is essential to refining our understanding of cardiovascular disease processes. Ultrasound echocardiography has emerged as a powerful, noninvasive tool to serially monitor cardiac performance and map the progression of heart dysfunction in murine injury models. This review covers current applications of small animal echocardiography, as well as emerging technologies that improve evaluation of LV function. In particular, we describe speckle-tracking imaging-based regional LV analysis, a recent advancement in murine echocardiography with proven clinical utility. This sensitive measure enables an early detection of subtle myocardial defects before global dysfunction in genetically engineered and rodent surgical injury models. Novel visualization technologies that allow in-depth phenotypic assessment of small animal models, including perfusion imaging and fetal echocardiography, are also discussed. As imaging capabilities continue to improve, murine echocardiography will remain a critical component of the investigator's armamentarium in translating animal data to enhanced clinical treatment of cardiovascular diseases.  相似文献   

7.
There is rapidly increasing interest in the use of magnetic resonance imaging (MRI) to track cell migration in vivo. Iron oxide MR contrast agents can be detected at micromolar concentrations of iron, and offer sufficient sensitivity for T2*-weighted imaging. Cellular MRI shows potential for assessing aspects of cardiovascular disease. Labeling in vivo and tracking macrophages using iron oxide nanoparticles has been a goal for cellular MRI because macrophages play a pivotal role in the pathophysiology of many human diseases, including atherosclerosis. Cellular MRI has also been using to track transplanted therapeutic cells in myocardial regeneration. This review looked at iron oxide nanoparticles, methods of cell labeling, image acquisition techniques and limitations encountered for visualization. Particular attention was paid to stem cells and macrophages for the cardiovascular system.  相似文献   

8.
One of the earliest applications of clinical echocardiography is evaluation of left ventricular (LV) function and size. Accurate, reproducible and quantitative evaluation of LV function and size is vital for diagnosis, treatment and prediction of prognosis of heart disease. Early three-dimensional (3D) echocardiographic techniques showed better reproducibility than two-dimensional (2D) echocardiography and narrower limits of agreement for assessment of LV function and size in comparison to reference methods, mostly cardiac magnetic resonance (CMR) imaging, but acquisition methods were cumbersome and a lack of user-friendly analysis software initially precluded widespread use. Through the advent of matrix transducers enabling real-time three-dimensional echocardiography (3DE) and improvements in analysis software featuring semi-automated volumetric analysis, 3D echocardiography evolved into a simple and fast imaging modality for everyday clinical use. 3DE provides the possibility to evaluate the entire LV in three spatial dimensions during the complete cardiac cycle, offering a more accurate and complete quantitative evaluation the LV. Improved efficiency in acquisition and analysis may provide clinicians with important diagnostic information within minutes. The current article reviews the methodology and application of 3DE for quantitative evaluation of the LV, provides the scientific evidence for its current clinical use, and discusses its current limitations and potential future directions.  相似文献   

9.
10.
Amyloid plaque is associated with several neuronal and non-neuronal degenerative diseases. More than twenty human proteins can fold abnormally to form pathological deposits like amyloid plaque. Strategies for treating such diseases include therapies designed to decrease protein plaque formation or its complete clearance, but monitoring/clinical trials of these treatments are limited by the lack of effective methods to monitor amyloid deposits in the organs/tissues of living patients. The current study shows binding and staining ability of quinacrine to protein amyloid deposits, using Hen Egg White Lysozyme (HEWL) as model system and characterization of its binding interaction with HEWL, employing several biophysical techniques. Since quinacrine can pass the blood brain barrier, the current report suggests potential application of quinacrine for antemortem diagnostic of amyloid.  相似文献   

11.
Heart failure due to coronary artery disease has considerable morbidity and poor prognosis. An understanding of the underlying mechanics governing myocardial contraction is a prerequisite for interpreting and predicting changes induced by heart disease. Gross changes in contractile behaviour of the myocardium are readily detected with existing techniques. For more subtle changes during early stages of cardiac dysfunction, however, a sensitive method for measuring, as well as a precise criterion for quantifying, normal and impaired myocardial function is required. The purpose of this paper is to outline the role of imaging, particularly cardiovascular magnetic resonance (CMR), for investigating the fundamental relationships between cardiac morphology, function and flow. CMR is emerging as an important clinical tool owing to its safety, versatility and the high-quality images it produces that allow accurate and reproducible quantification of cardiac structure and function. We demonstrate how morphological and functional assessment of the heart can be achieved by CMR and illustrate how blood flow imaging can be used to study flow and structure interaction, particularly for elucidating the underlying haemodynamic significance of directional changes and asymmetries of the cardiac looping. Future outlook on combining imaging with engineering approaches in subject-specific biomechanical simulation is also provided.  相似文献   

12.
Swan-Ganz catheterization can facilitate intra-operative management of critically ill patients. The derived data lacks specificity, however, and, as such, is frequently misleading. This disadvantage, combined with recent advances in echocardiography imaging techniques, has resulted in increasing application of transesophageal (TE) two-dimensional echocardiography (2D-echo) to supplement and, in instances, to supplant conventional cardiac monitoring. This paper reviews the current status of single-plane TE 2D-echo as it pertains to evaluation of left ventricular (LV) volume status, performance, and ischemia. It is concluded that, while 2D-echo multiple-plane analyses provide an accurate representation of LV dimensions, interpretation of TE single-plane end-diastolic measurements should be limited to differentiation between extremes of LV volume. In contrast, corresponding estimates of LV ejection fraction correlate closely with overall performance, at least in cases without asynergy. Finally, the capacity of TE 2D-echo to detect LV regional wall-motion abnormalities can be particularly useful. Such abnormalities commonly represent early manifestations of ischemia and can, in addition, be predictive of subsequent outcome.  相似文献   

13.
Several methods allow regional gas exchange to be inferred from imaging of regional ventilation and perfusion (V/Q) ratios. Each method measures slightly different aspects of gas exchange and has inherent advantages and drawbacks that are reviewed. Single photon emission computed tomography can provide regional measure of ventilation and perfusion from which regional V/Q ratios can be derived. PET methods using inhaled or intravenously administered nitrogen-13 provide imaging of both regional blood flow, shunt, and ventilation. Electric impedance tomography has recently been refined to allow simultaneous measurements of both regional ventilation and blood flow. MRI methods utilizing hyperpolarized helium-3 or xenon-129 are currently being refined and have been used to estimate local PaO(2) in both humans and animals. Microsphere methods are included in this review as they provide measurements of regional ventilation and perfusion in animals. One of their advantages is their greater spatial resolution than most imaging methods and the ability to use them as gold standards against which new imaging methods can be tested. In general, the reviewed methods differ in characteristics such as spatial resolution, possibility of repeated measurements, radiation exposure, availability, expensiveness, and their current stage of development.  相似文献   

14.
Transgenic mice offer a valuable way to relate gene products to phenotype, but the ability to assess the cardiovascular phenotype with pressure-volume analysis has lagged. Conductance measurement offers a method to generate an instantaneous left ventricular (LV) volume signal in the mouse but has been limited by the volume signal being a combination of blood and LV muscle. We hypothesized that by developing a mouse conductance system that operates at several simultaneous frequencies, we could identify and correct for the myocardial contribution to the instantaneous volume signal. This hypothesis is based on the assumption that mouse myocardial conductivity will vary with frequency, whereas mouse blood conductivity will not. Consistent with this hypothesis, we demonstrated that at higher excitation frequency, greater end-diastolic and end-systolic conductance are detected, as well as a smaller difference between the two. We then empirically solved for LV blood volume using two frequencies. We combined measured resistivity of mouse myocardium with an analytic approach and extracted an estimate of LV blood volume from the raw conductance signal. Development of a multifrequency catheter-based system to determine LV function could be a tool to assess cardiovascular phenotype in transgenic mice.  相似文献   

15.
Traditionally, global and longitudinal (i.e., regional) left ventricular (LV) diastolic function (DF) assessment has utilized features of transmitral Doppler E and A waves or Doppler tissue imaging (DTI)-derived mitral annular E' and A' waves, respectively. Quantitation of regional DF has included M-mode echocardiography-based approaches and strain and strain rate imaging (in selected imaging planes), while analysis of mitral annular "oscillations" has recently provided a new window into longitudinal (long-axis) function. The remaining major spatial degree of kinematic freedom during diastole, radial (short-axis) motion, has not been fully characterized, nor has it been exploited for its potential to provide radial LV stiffness (k'(rad)) and relaxation/damping (c'(rad)) indexes. Prior characterization of regional (longitudinal) DF used only annular E'- and A'-wave peak velocities or, alternatively, myocardial strain and strain rate. By kinematically modeling short-axis tissue motion as damped radial oscillation, we present a novel method of estimating k'(rad) and c'(rad) during early filling. As required by the (near) constant-volume property of the heart and tissue/blood incompressibility, in subjects (n = 10) with normal DF, we show that oscillation duration-determined longitudinal (k'(long) and c'(long)) and radial (k'(long) and c'(rad)) parameters are highly correlated (R = 0.69 and 0.92, respectively). Selected examples of diabetic and LV hypertrophic subjects yield radial (k'(long) and c'(rad)) parameters that differ substantially from controls. Results underscore the utility of the incompressibility-based causal relation between DTI-determined mitral annular long-axis (longitudinal mode) and short-axis (radial mode) oscillations in healthy subjects. Selected pathological examples provide mechanistic insight and illustrate the value and potential role of regional (longitudinal and radial) DF indexes in fully characterizing normal vs. impaired DF states.  相似文献   

16.
Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.  相似文献   

17.
18.
We aim to demonstrate the application of free-breathing prospectively gated carbon nanotube (CNT) micro-CT by evaluating a myocardial infarction model with a delayed contrast enhancement technique. Evaluation of murine cardiac models using micro-CT imaging has historically been limited by extreme imaging requirements. Newly-developed CNT-based x-ray sources offer precise temporal resolution, allowing elimination of physiological motion through prospective gating. Using free-breathing, cardiac-gated CNT micro-CT, a myocardial infarction model can be studied non-invasively and with high resolution. Myocardial infarction was induced in eight male C57BL/6 mice aged 8–12 weeks. The ischemia reperfusion model was achieved by surgically occluding the LAD artery for 30 minutes followed by 24 hours of reperfusion. Tail vein catheters were placed for contrast administration. Iohexol 300mgI/mL was administered followed by images obtained in diastole. Iodinated lipid blood pool contrast agent was then administered, followed with images at systole and diastole. Respiratory and cardiac signals were monitored externally and used to gate the scans of free-breathing subjects. Seven control animals were scanned using the same imaging protocol. After imaging, the heart was harvested, cut into 1mm slices and stained with TTC. Post-processing analysis was performed using ITK-Snap and MATLAB. All animals demonstrated obvious delayed contrast enhancement in the left ventricular wall following the Iohexol injection. The blood pool contrast agent revealed significant changes in cardiac function quantified by 3-D volume ejection fractions. All subjects demonstrated areas of myocardial infarct in the LAD distribution on both TTC staining and micro-CT imaging. The CNT micro-CT system aids straightforward, free-breathing, prospectively-gated 3-D murine cardiac imaging. Delayed contrast enhancement allows identification of infarcted myocardium after a myocardial ischemic event. We demonstrate the ability to consistently identify areas of myocardial infarct in mice and provide functional cardiac information using a delayed contrast enhancement technique.  相似文献   

19.
The cardiac diagnostic process is primarily based on the evaluation of myocardial mechanics whereas little is known about blood dynamics that is rarely considered to this purpose. The intraventricular blood flow is analysed here for akinetic and dyskinetic myocardial motion corresponding to the presence of an ischaemic pathology. This study is performed through a 3D numerical model of the left ventricular flow. Results show that the presence of an anterior-inferior wall infarction leads to the shortening and weakening of the diastolic mitral jet. A region of stagnating flow is found near the apex and close to the ischaemic wall. These results are in agreement with previous clinical findings based on echographic imaging. The described phenomena are also noticed for moderate degrees of the ischaemic pathology and suggest a potential value of the study of the intraventricular flow to develop early diagnostic indicators.  相似文献   

20.
Heterogeneity of regional coronary blood flow is caused in part by heterogeneity in O(2) demand in the normal heart. We investigated whether myocardial O(2) supply/demand mismatching is associated with the myocardial depression of sepsis. Regional blood flow (microspheres) and O(2) uptake ([(13)C]acetate infusion and analysis of resultant NMR spectra) were measured in about nine contiguous tissue samples from the left ventricle (LV) in each heart. Endotoxemic pigs (n = 9) showed hypotension at unchanged cardiac output with a fall in LV stroke work and first derivative of LV pressure relative to controls (n = 4). Global coronary blood flow and O(2) delivery were maintained. Lactate accumulated in arterial blood, but net lactate extraction across the coronary bed was unchanged during endotoxemia. When LV O(2) uptake based on blood gas versus NMR data were compared, the correlation was 0.73 (P = 0.007). While stable over time in controls, regional blood flows were strongly redistributed during endotoxin shock, with overall flow heterogeneity unchanged. A stronger redistribution of blood flow with endotoxin was associated with a larger fall in LV function parameters. Moreover, the correlation of regional O(2) delivery to uptake fell from r = 0.73 (P < 0.001) in control to r = 0.18 (P = 0.25, P = 0.009 vs. control) in endotoxemic hearts. The results suggest a redistribution of LV regional coronary blood flow during endotoxin shock in pigs, with regional O(2) delivery mismatched to O(2) demand. Mismatching may underlie, at least in part, the myocardial depression of sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号