共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Martin G Burke B Thaï R Dey AK Combes O Ramos OH Heyd B Geonnotti AR Montefiori DC Kan E Lian Y Sun Y Abache T Ulmer JB Madaoui H Guérois R Barnett SW Srivastava IK Kessler P Martin L 《The Journal of biological chemistry》2011,286(24):21706-21716
CD4 binding on gp120 leads to the exposure of highly conserved regions recognized by the HIV co-receptor CCR5 and by CD4-induced (CD4i) antibodies. A covalent gp120-CD4 complex was shown to elicit CD4i antibody responses in monkeys, which was correlated with control of the HIV virus infection (DeVico, A., Fouts, T., Lewis, G. K., Gallo, R. C., Godfrey, K., Charurat, M., Harris, I., Galmin, L., and Pal, R. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 17477-17482). Because the inclusion of CD4 in a vaccine formulation should be avoided, due to potential autoimmune reactions, we engineered small sized CD4 mimetics (miniCD4s) that are poorly immunogenic and do not induce anti-CD4 antibodies. We made covalent complexes between such an engineered miniCD4 and gp120 or gp140, through a site-directed coupling reaction. These complexes were recognized by CD4i antibodies as well as by the HIV co-receptor CCR5. In addition, they elicit CD4i antibody responses in rabbits and therefore represent potential vaccine candidates that mimic an important HIV fusion intermediate, without autoimmune hazard. 相似文献
5.
Haim H Strack B Kassa A Madani N Wang L Courter JR Princiotto A McGee K Pacheco B Seaman MS Smith AB Sodroski J 《PLoS pathogens》2011,7(6):e1002101
Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like") viruses, globally sensitive ("Tier 1") viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of inhibitor/antibody binding to the envelope glycoprotein trimer and by envelope glycoprotein reactivity to the inhibitor/antibody binding event. Quantitative differences in intrinsic reactivity contribute to HIV-1 strain variability in global susceptibility to neutralization and explain the long-observed relationship between increased inhibitor sensitivity and decreased entry requirements for target cell CD4. 相似文献
6.
Li X 《Cytokine》2008,41(2):105-113
Coordinated regulation of T and B cell-mediated immune responses plays a critical role in the control and modulation of autoimmune diseases. This review is focused on the adapter molecule Act1 and its regulation of autoimmunity through its impact on both T and B cell-mediated immune responses. Whereas Act1 molecule is an important negative regulator for B cell-mediated humoral immune responses through its function in CD40L and BAFF signaling, recent studies have shown that Act1 is also a key positive signaling component for IL-17 signaling pathway, critical for T(H)17-mediated autoimmune and inflammatory responses. The dual functions of Act1 are evident in Act1-deficient mice that displayed B cell-mediated autoimmune phenotypes (including dramatic increase in peripheral B cells, lymphadenopathy and splenomegaly, hypergammaglobulinemia and Sjogren's disease in association with Lupus Nephritis), but showed resistance to T(H)17-dependent EAE and colitis. Such seemingly opposite functions of Act1 in CD40-BAFFR and IL-17R signaling are orchestrated by different domains in Act1. Whereas Act1 interacts with the IL-17R through the C-terminal SEFIR domain, Act1 is recruited to CD40 and BAFFR indirectly, which is mediated by TRAF3 through the TRAF binding site in Act1. Such delicate regulatory mechanisms may provide a common vehicle to promote balance between host defense to pathogens and tolerance to self. 相似文献
7.
8.
9.
Binding of HIV-1 gp120 to T-cell receptor CD4 initiates conformational changes in the viral envelope that trigger viral entry into host cells. Phage epitope randomization of a beta-turn loop of a charybdotoxin-based miniprotein scaffold was used to identify peptides that can bind gp120 and block the gp120-CD4 interaction. We describe here the display of the charybdotoxin scaffold on the filamentous phage fUSE5, its use to construct a beta-turn library, and miniprotein sequences identified through library panning with immobilized Env gp120. Competition enzyme-linked immunosorbent assay (ELISA) identified high-frequency phage selectants for which specific gp120 binding was competed by sCD4. Several of these selectants contain hydrophobic residues in place of the Phe that occurs in the gp120-binding beta-turns of both CD4 and previously identified scorpion toxin CD4 mimetics. One of these selectants, denoted TXM[24GQTL27], contains GQTL in place of the CD4 beta-turn sequence 40QGSF43. TXM[24GQTL27] peptide was prepared using solid-phase chemical synthesis, its binding to gp120 demonstrated by optical biosensor kinetics analysis and its affinity for the CD4 binding site of gp120 confirmed by competition ELISA. The results demonstrate that aromatic-less loop-containing CD4 recognition mimetics can be formed with detectable envelope protein binding within a beta-turn of the charybdotoxin miniprotein scaffold. The results of this work establish a methodology for phage display of a charybdotoxin miniprotein scaffold and point to the potential value of phage-based epitope randomization of this miniprotein for identifying novel CD4 mimetics. The latter are potentially useful in deconvoluting structural determinants of CD4-HIV envelope recognition and possibly in designing antagonists of viral entry. 相似文献
10.
11.
Fang Y Banner D Kelvin AA Huang SS Paige CJ Corfe SA Kane KP Bleackley RC Rowe T Leon AJ Kelvin DJ 《Journal of virology》2012,86(4):2229-2238
During the 2009 H1N1 influenza virus pandemic (pdmH1N1) outbreak, it was found that most individuals lacked antibodies against the new pdmH1N1 virus, and only the elderly showed anti-hemagglutinin (anti-HA) antibodies that were cross-reactive with the new strains. Different studies have demonstrated that prior contact with the virus can confer protection against strains with some degree of dissimilarity; however, this has not been sufficiently explored within the context of a pdmH1N1 virus infection. In this study, we have found that a first infection with the A/Brisbane/59/2007 virus strain confers heterologous protection in ferrets and mice against a subsequent pdmH1N1 (A/Mexico/4108/2009) virus infection through a cross-reactive but non-neutralizing antibody mechanism. Heterologous immunity is abrogated in B cell-deficient mice but maintained in CD8(-/-) and perforin-1(-/-) mice. We identified cross-reactive antibodies from A/Brisbane/59/2007 sera that recognize non-HA epitopes in pdmH1N1 virus. Passive serum transfer showed that cross-reactive sH1N1-induced antibodies conferred protection in naive recipient mice during pdmH1N1 virus challenge. The presence or absence of anti-HA antibodies, therefore, is not the sole indicator of the effectiveness of protective cross-reactive antibody immunity. Measurement of additional antibody repertoires targeting the non-HA antigens of influenza virus should be taken into consideration in assessing protection and immunization strategies. We propose that preexisting cross-protective non-HA antibody immunity may have had an overall protective effect during the 2009 pdmH1N1 outbreak, thereby reducing disease severity in human infections. 相似文献
12.
Previous work from our group stated that nitric oxide (NO), via cytokines, induces apoptosis in chromaffin cells by a mechanism involving iNOS, nNOS, and NF-κB. In this paper the involvement of glutamate as a possible intracellular trigger of neurosecretion and NO-mediated apoptosis has been evaluated. We show that chromaffin cells express different ionotropic and metabotropic glutamate receptors, this exerting different effects on the regulation of basal and glutamate-induced catecholamine secretion, via NO/cGMP. In addition, we studied the effects of endogenously generated NO, both basal and glutamate-stimulated, on apoptosis of chromaffin cells. Our results show that glutamate agonists are able to induce cell death and apoptosis in bovine chromaffin cells, parallel to an increase in NO production. Such effects were reversed by NOS inhibitors and glutamate receptor antagonists. Under basal conditions, iNOS inhibitors did not have any effect on apoptosis, whereas nNOS inhibitors induced apoptosis, indicating a neuroprotective effect of constitutive nNOS-generated NO. In contrast, glutamate-induced apoptosis was strongly reversed by nNOS inhibitors and weakly by iNOS inhibitors, thus indicating nNOS involvement in glutamate-mediated apoptosis. These results were confirmed by the fact that nNOS expression, but not iNOS, is specifically activated by glutamate. Finally, our results suggest the participation of PKG, PKA, PKC, and MAPK pathways in glutamate-mediated nNOS activation in chromaffin cells and point out the involvement of both PKA and PKC signaling pathways in the apoptotic effect of glutamate. 相似文献
13.
Fuller GL Williams JA Tomlinson MG Eble JA Hanna SL Pöhlmann S Suzuki-Inoue K Ozaki Y Watson SP Pearce AC 《The Journal of biological chemistry》2007,282(17):12397-12409
The two lectin receptors, CLEC-2 and Dectin-1, have been shown to signal through a Syk-dependent pathway, despite the presence of only a single YXXL in their cytosolic tails. In this study, we show that stimulation of CLEC-2 in platelets and in two mutant cell lines is dependent on the YXXL motif and on proteins that participate in signaling by immunoreceptor tyrosine-based activation motif receptors, including Src, Syk, and Tec family kinases, and on phospholipase Cgamma. Strikingly, mutation of either Src homology (SH) 2 domain of Syk blocks signaling by CLEC-2 despite the fact that it has only a single YXXL motif. Furthermore, signaling by CLEC-2 is only partially dependent on the BLNK/SLP-76 family of adapter proteins in contrast to that of immunoreceptor tyrosine-based activation motif receptors. The C-type lectin receptor, Dectin-1, which contains a YXXL motif preceded by the same four amino acids as for CLEC-2 (DEDG), signals like CLEC-2 and also requires the two SH2 domains of Syk and is only partially dependent on the BLNK/SLP-76 family of adapters. In marked contrast, the C-type lectin receptor, DC-SIGN, which has a distinct series of amino acids preceding a single YXXL, signals independent of this motif. A mutational analysis of the DEDG sequence of CLEC-2 revealed that the glycine residue directly upstream of the YXXL tyrosine is important for CLEC-2 signaling. These results demonstrate that CLEC-2 and Dectin-1 signal through a single YXXL motif that requires the tandem SH2 domains of Syk but is only partially dependent on the SLP-76/BLNK family of adapters. 相似文献
14.
15.
Georgopoulos NT Steele LP Thomson MJ Selby PJ Southgate J Trejdosiewicz LK 《Cell death and differentiation》2006,13(10):1789-1801
Membrane-presented CD40 agonists can induce apoptosis in carcinoma, but not normal homologous epithelial cells, whereas soluble agonists are growth inhibitory but not proapoptotic unless protein synthesis is blocked. Here we demonstrate that membrane-presented CD40 ligand (CD154) (mCD40L), but not soluble agonists, triggers cell death in malignant human urothelial cells via a direct mechanism involving rapid upregulation of TNFR-associated factor (TRAF)3 protein, without concomitant upregulation of TRAF3 mRNA, followed by activation of the c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway and induction of the caspase-9/caspase-3-associated intrinsic apoptotic machinery. TRAF3 knockdown abrogated JNK/AP-1 activation and prevented CD40-mediated apoptosis, whereas restoration of CD40 expression in CD40-negative carcinoma cells restored apoptotic susceptibility via the TRAF3/AP-1-dependent mechanism. In normal human urothelial cells, mCD40L did not trigger apoptosis, but induced rapid downregulation of TRAF2 and 3, thereby paralleling the situation in B-lymphocytes. Thus, TRAF3 stabilization, JNK activation and caspase-9 induction define a novel pathway of CD40-mediated apoptosis in carcinoma cells. 相似文献
16.
Stricher F Huang CC Descours A Duquesnoy S Combes O Decker JM Kwon YD Lusso P Shaw GM Vita C Kwong PD Martin L 《Journal of molecular biology》2008,382(2):510-524
Miniproteins provide a bridge between proteins and small molecules. Here we adapt methods from combinatorial chemistry to optimize CD4M33, a synthetic miniprotein into which we had previously transplanted the HIV-1 gp120 binding surface of the CD4 receptor. Iterative deconvolution of generated libraries produced CD4M47, a derivative of CD4M33 that had been optimized at four positions. Surface plasmon resonance demonstrated fourfold to sixfold improvement in CD4M47 affinity for gp120 to a level about threefold tighter than that of CD4 itself. Assessment of the neutralization properties of CD4M47 against a diverse range of isolates spanning from HIV-1 to SIVcpz showed that CD4M47 retained the extraordinary breadth of the parent CD4M33, but yielded only limited improvements in neutralization potencies. Crystal structures of CD4M47 and a phenylalanine variant ([Phe23]M47) were determined at resolutions of 2.4 and 2.6 Å, in ternary complexes with HIV-1 gp120 and the 17b antibody. Analysis of these structures revealed a correlation between mimetic affinity for gp120 and overall mimetic-gp120 interactive surface. A correlation was also observed between CD4- and mimetic-induced gp120 structural similarity and CD4- and mimetic-induced gp120 affinity for the CCR5 coreceptor. Despite mimetic substitutions, including a glycine-to-(d)-proline change, the gp120 conformation induced by CD4M47 was as close or closer to the conformation induced by CD4 as the one induced by the parent CD4M33. Our results demonstrate the ability of combinatorial chemistry to optimize a disulfide-containing miniprotein, and of structural biology to decipher the resultant interplay between binding affinity, neutralization breadth, molecular mimicry, and induced affinity for CCR5. 相似文献
17.
Cols M Barra CM He B Puga I Xu W Chiu A Tam W Knowles DM Dillon SR Leonard JP Furman RR Chen K Cerutti A 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(12):6071-6083
Chronic lymphocytic leukemia (CLL) is a clonal B cell disorder of unknown origin. Accessory signals from the microenvironment are critical for the survival, expansion, and progression of malignant B cells. We found that the CLL stroma included microvascular endothelial cells (MVECs) expressing BAFF and APRIL, two TNF family members related to the T cell-associated B cell-stimulating molecule CD40L. Constitutive release of soluble BAFF and APRIL increased upon engagement of CD40 on MVECs by CD40L aberrantly expressed on CLL cells. In addition to enhancing MVEC expression of CD40, leukemic CD40L induced cleavases that elicited intracellular processing of pro-BAFF and pro-APRIL proteins in MVECs. The resulting soluble BAFF and APRIL proteins delivered survival, activation, Ig gene remodeling, and differentiation signals by stimulating CLL cells through TACI, BAFF-R, and BCMA receptors. BAFF and APRIL further amplified CLL cell survival by upregulating the expression of leukemic CD40L. Inhibition of TACI, BCMA, and BAFF-R expression on CLL cells; abrogation of CD40 expression in MVECs; or suppression of BAFF and APRIL cleavases in MVECs reduced the survival and diversification of malignant B cells. These data indicate that BAFF, APRIL, and CD40L form a CLL-enhancing bidirectional signaling network linking neoplastic B cells with the microvascular stroma. 相似文献
18.
Kappeler L De Magalhaes Filho C Dupont J Leneuve P Cervera P Périn L Loudes C Blaise A Klein R Epelbaum J Le Bouc Y Holzenberger M 《PLoS biology》2008,6(10):e254
Mutations that decrease insulin-like growth factor (IGF) and growth hormone signaling limit body size and prolong lifespan in mice. In vertebrates, these somatotropic hormones are controlled by the neuroendocrine brain. Hormone-like regulations discovered in nematodes and flies suggest that IGF signals in the nervous system can determine lifespan, but it is unknown whether this applies to higher organisms. Using conditional mutagenesis in the mouse, we show that brain IGF receptors (IGF-1R) efficiently regulate somatotropic development. Partial inactivation of IGF-1R in the embryonic brain selectively inhibited GH and IGF-I pathways after birth. This caused growth retardation, smaller adult size, and metabolic alterations, and led to delayed mortality and longer mean lifespan. Thus, early changes in neuroendocrine development can durably modify the life trajectory in mammals. The underlying mechanism appears to be an adaptive plasticity of somatotropic functions allowing individuals to decelerate growth and preserve resources, and thereby improve fitness in challenging environments. Our results also suggest that tonic somatotropic signaling entails the risk of shortened lifespan. 相似文献
19.
Neurotensin triggers dopamine D2 receptor desensitization through a protein kinase C and beta-arrestin1-dependent mechanism 总被引:1,自引:0,他引:1
Thibault D Albert PR Pineyro G Trudeau LÉ 《The Journal of biological chemistry》2011,286(11):9174-9184
The peptide neurotensin (NT) is known to exert a potent excitatory effect on the dopaminergic system by inhibiting D2 dopamine (DA) receptor (D2R) function. This regulation is dependent on activation of PKC, a well known effector of the type 1 NT receptor (NTR1). Because PKC phosphorylation of the D2R has recently been shown to induce its internalization, we hypothesized that NT acts to reduce D2R function through heterologous desensitization of the D2R. In the present study, we first used HEK-293 cells to demonstrate that NT induces PKC-dependent D2R internalization. Furthermore, internalization displayed faster kinetics in cells expressing the D2R short isoform, known to act as an autoreceptor in DA neurons, than in cells expressing the long isoform, known to act as a postsynaptic D2R. In patch clamp experiments on cultured DA neurons, overexpression of a mutant D2S lacking three key PKC phosphorylation sites abrogated the ability of NT to reduce D2R-mediated cell firing inhibition. Short interfering RNA-mediated inhibition of β-arrestin1 and dynamin2, proteins important for receptor desensitization, reduced agonist-induced desensitization of D2R function, but only the inhibition of β-arrestin1 reduced the effect of NT on D2R function. Taken together, our data suggest that NT acutely regulates D2 autoreceptor function and DA neuron excitability through PKC-mediated phosphorylation of the D2R, leading to heterologous receptor desensitization. 相似文献
20.
Transmembrane signals generated following mAb binding to CD19, CD20, CD39, CD40, CD43, Leu-13 Ag, and HLA-D region gene products induced rapid and strong homotypic adhesion in a panel of human B cell lines. Lower levels of adhesion were also observed after engagement of CD21, CD22, and CD23. Adhesion induced by mAb binding to these Ag was identical with respect to the kinetics of adhesion and the morphology of the resulting cellular aggregates, and was distinct from PMA-induced adhesion in both of these properties. Adhesion was not observed in response to mAb binding to MHC class I, CD24, CD38, CD44, CD45RA, or CD72. In contrast to B cell lines, homotypic adhesion was not induced in two pre-B cell lines, in spite of their high level expression of CD19 and HLA-D. Adhesion induced by suboptimal stimulation through these surface Ag or by PMA was mediated primarily through LFA-1 and ICAM-1. However, optimal stimulation through CD19, CD20, CD39, CD40, and HLA-D induced strong homotypic adhesion that was not blocked by anti-LFA-1 mAb. This alternate pathway of adhesion was also observed in LFA-1-deficient cell lines and in the presence of EDTA, suggesting that adhesion was not mediated by integrins. Adhesion in response to engagement of cell-surface Ag was unaffected by H7 or genestein, but was significantly inhibited by staurosporine, and was completely ablated by sphingosine and herbimycin. These studies indicate that engagement of multiple B cell-surface molecules initiates a signal transduction cascade that involves tyrosine kinases but not protein kinase C, and which leads to homotypic adhesion. Furthermore, adhesion was mediated by at least two distinct cell-surface adhesion receptors: LFA-1/ICAM-1 and a heretofore unknown adhesion receptor. 相似文献