首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The freezing point depression of freshly excised frozen tissues, pulverized in a hydraulic press or in a mortar, is greater than that of plasma. Even at 0°C. the freezing point depression of such homogenates increases significantly with time. Dilution data indicate that such freezing point data are valid. The presence of intact cells has been shown in smears of tissues pulverized in a mortar, but not in smears of those crushed in a hydraulic press. The osmolarity of various diluent solutions affects the calculated osmotic activity of tissue homogenates presumably because of delayed diffusion between the diluent and cell fluid. With a hypertonic NaCl diluent, spuriously low values of tissue osmotic activity are found from calculations assuming instantaneous mixing between homogenates and diluents. The limitations of data from cryoscopic experiments and from tissue-swelling experiments are discussed in relation to the basic question of whether or not cell fluid is isotonic to extracellular fluid.  相似文献   

2.
Efflux of Red Cell Water into Buffered Hypertonic Solutions   总被引:3,自引:2,他引:1       下载免费PDF全文
Buffered NaCl solutions hypertonic to rabbit serum were prepared and freezing point depressions of each determined after dilution with measured amounts of water. Freezing point depression of these dilutions was a linear function of the amount of water added. One ml. of rabbit red cells was added to each 4 ml. of the hypertonic solutions and after incubation at 38°C. for 30 minutes the mixture was centrifuged and a freezing point depression determined on the supernatant fluid. The amount of water added to the hypertonic solutions by the red cells was calcuated from this freezing point depression. For each decrease in the freezing point of -0.093°C. of the surrounding solution red cells gave up approximately 5 ml. of water per 100 ml. of red cells in the range of -0.560 to -0.930°C. Beyond -0.930°C. the amount of water given up by 100 ml. of red cells fits best a parabolic equation. The maximum of this equation occurred at a freezing point of the hypertonic solution of -2.001°C. at which time the maximum amount of water leaving the red cells would be 39.9 ml. per 100 ml. of red cells. The data suggest that only about 43 per cent of the red cell water is available for exchange into solutions of increasing tonicity.  相似文献   

3.
By a method involving equilibration of ice and solution, and analysis of the solution, freezing point depressions of solutions of sodium citrate, oxalate, and fluoride have been determined over the range Δ = 0.45 to 0.65°C. Determinations with sodium chloride solutions have confirmed the accuracy of the method. In each case the freezing point depression is given, within 0.002°C., as a linear function of the concentration. By the use of these linear equations it is possible to prepare a solution of any of these four salts isotonic with a given biological fluid of known freezing point, provided the latter falls within the range studied.  相似文献   

4.
J.B. Griffiths 《Cryobiology》1978,15(5):517-529
The effect of subjecting the mammalian cell lines MRC-5 and CHO to hypertonic salt concentrations (0.16 to 2.4 m) and returning them to isotonic conditions was investigated. Parameters for measuring cell size, viability and release of radiochemical markers were used to determine the relative susceptibilities of the two cell lines to hypertonic stress and the relative effects of increasing and decreasing hypertonicity. The aim of this study was to determine how great a role hypertonic stress plays in freeze-thaw damage of mamalian cells. This type of study has been extensively used for erythrocytes but not for nucleated mamamlian cell lines.The findings were that considerable cell shrinkage occurred, with a minimum size at 0.6 m NaCl, but that this caused no cell injury or death. Injury, measured by cation leakage and release of membrane and cytoplasmic labels occurred whilst the cell was swelling after reaching its minimum volume. MRC-5 cells succumbed at relatively low salt concentrations and became denatured. CHO cells withstood far high salt concentrations but were then damaged during dilution back to isotonic conditions. Comparison of the data obtained from hypertonic stress experiments and freeze-thaw experiments showed many similarities for CHO cells and indicated that the cell membrane could withstand high salt concentrations both at constant and changing temperatures but were prone to injury on dilution back to isotonic conditions. MRC-5 cells were shown to be very prone to cold shock and the results indicated that they probably succumb to damage and death during the hypertonic phase of cooling rather than thawing thus explaining their much lower survival from freeze-thaw experiments than CHO cells. The influence of DMSO in delaying cell damage to higher salt concentrations and lessening disruptive swelling during dilution were also demonstrated.  相似文献   

5.
Acute bilateral atrial auriectomy in anesthetized dogs reduced diuresis and natriuresis induced by both extracellular fluid volume expansion with isotonic saline and a hypertonic saline load. Since a hypertonic saline load, in contrast to isotonic saline infusion, was not accompanied by a significant increase in central venous pressure it is proposed that either increased plasma osmolality or plasma sodium concentration (or both) participate in the modulation of the atrial natriuretic mechanism.  相似文献   

6.
Muldrew K 《Cryobiology》2008,57(3):251-256
The phenomenon of slow cooling cryoinjury has remained one of the primary areas of research in cryobiology since the early 1950s when it was first investigated thoroughly. Lovelock demonstrated that cell death from freezing and thawing was mainly due to exposure to hypertonic solutions and the subsequent dilution back to isotonic conditions. He suggested that the cell became permeable to sodium in hypertonic conditions leading to a loading of sodium during the hypertonic exposure, which caused the cell to swell past its elastic limit during resuspension in isotonic media (post-hypertonic lysis). This idea was pursued by Zade-Oppen, Farrant, and others who were able to show that the membrane became leaky to cations in hypertonic media but they could not provide any mechanism that would cause the cell to load up with sodium (other than an exchange of extracellular sodium for intracellular potassium, leaving the cell with the same cation concentration that it started out with). In the absence of such a mechanism, predicting post-hypertonic lysis from osmotic simulations cannot be done.A simplified model is proposed in which the intracellular milieu is composed of both KCl and a proteinaceous component that normally forms many salt bridges between amino acids with fixed charges. When the intracellular salt concentration increases, the proteins are “salted in” to solution (salt bridges are replaced with ionic interactions) thereby decreasing the intracellular cation concentration. Cation channels in the plasma membrane are opened by exposure to a high salt concentration (either inside or outside the membrane) allowing extracellular sodium to take the place of the intracellular potassium that is interacting with anionic groups on the proteins. Dilution of the external medium (which also occurs during melting) causes water to move into the cells, diluting the cytoplasm. The proteins are then “salted out” of solution and release the salt back to free ions in solution. The cell has an excess of intracellular ions and may swell past its elastic limit due to water influx. A simulation engine is developed based on the model and compared to results in the literature for freeze–thaw injury in human red blood cells.  相似文献   

7.
《Cryobiology》2009,58(3):251-256
The phenomenon of slow cooling cryoinjury has remained one of the primary areas of research in cryobiology since the early 1950s when it was first investigated thoroughly. Lovelock demonstrated that cell death from freezing and thawing was mainly due to exposure to hypertonic solutions and the subsequent dilution back to isotonic conditions. He suggested that the cell became permeable to sodium in hypertonic conditions leading to a loading of sodium during the hypertonic exposure, which caused the cell to swell past its elastic limit during resuspension in isotonic media (post-hypertonic lysis). This idea was pursued by Zade-Oppen, Farrant, and others who were able to show that the membrane became leaky to cations in hypertonic media but they could not provide any mechanism that would cause the cell to load up with sodium (other than an exchange of extracellular sodium for intracellular potassium, leaving the cell with the same cation concentration that it started out with). In the absence of such a mechanism, predicting post-hypertonic lysis from osmotic simulations cannot be done.A simplified model is proposed in which the intracellular milieu is composed of both KCl and a proteinaceous component that normally forms many salt bridges between amino acids with fixed charges. When the intracellular salt concentration increases, the proteins are “salted in” to solution (salt bridges are replaced with ionic interactions) thereby decreasing the intracellular cation concentration. Cation channels in the plasma membrane are opened by exposure to a high salt concentration (either inside or outside the membrane) allowing extracellular sodium to take the place of the intracellular potassium that is interacting with anionic groups on the proteins. Dilution of the external medium (which also occurs during melting) causes water to move into the cells, diluting the cytoplasm. The proteins are then “salted out” of solution and release the salt back to free ions in solution. The cell has an excess of intracellular ions and may swell past its elastic limit due to water influx. A simulation engine is developed based on the model and compared to results in the literature for freeze–thaw injury in human red blood cells.  相似文献   

8.
Summary The freezing tolerance of cabbage petioles and asparagus shoot apexes was increased by preincubation with 0.8 M sugar solutions. In cabbage petioles with an initial freezing tolerance of –3 °C (temperature for 50% cell survival), as determined by both electrolyte leakage and fluorescein diacetate vital staining, the freezing tolerance was increased to –13 °C by incubation with sorbitol solutions for 3 h. In meristematic cells of asparagus shoot apexes with an initial freezing tolerance of –7.5 °C, as determined by fluorescein diacetate vital staining, the freezing tolerance was increased to –30 °C by incubation with 0.8 M sugar solutions for 3 h, although other cells in the shoot apexes were killed by higher freezing temperatures. During incubation of both cabbage petioles and asparagus shoot apexes with sugar solutions, sugars were intracellularly taken up by osmotically induced fluid-phase endocytotic vesicles, as indicated by comovement of Lucifer Yellows carbohydrazide (LYCH) observed with a confocal laser scanning microscope. The amounts of intracellularly taken up sugars increased concomitantly with the formation of endocytotic vesicles depending on the time of incubation in parallel with a gradual increase of freezing tolerance. However, the endocytotic vesicles and their contents were retained not only after prolonged incubation after maximum freezing tolerance had been achieved but also after recovery of these tissue cells to isotonic conditions or after freeze-thawing. These results suggest that although sugars are intracellularly taken up by endocytotic vesicles, they might be sequestered within vesicles, casting doubt on their protective role to the plasma membranes as a main site of freezing injury. The pretreatment with 1 mMp-chloromercuribenzenesulfonic acid (PCMBS), an inhibitor of sugar transport, reduced the amounts of intracellular sugar uptake without affecting the formation of endocytotic vesicles, suggesting that sugars were, at least partly, taken up by sugar transporters. In the pretreatment with PCMBS, the freezing tolerance of incubated tissues with sugar solutions was significantly reduced, although addition of PCMBS per se did not affect survival. These results suggest that sugars taken up by sugar transporters, rather than sugars taken up by endocytotic vesicles, are mainly responsible for the increased freezing tolerance of cabbage petioles and asparagus shoot apexes. Furthermore, we aimed to study the occurrence of fluid-phase endocytosis with LYCH in an isotonic condition. Our results indicated that uptake of LYCH by fluid-phase endocytotic vesicles was not detected microscopically in isotonic condition, although LYCH was spectrofluorimetrically taken up in isotonic condition. Spectrofluorimetric uptake of LYCH was inhibited by addition of probenecid, an anion transport inhibitor. These results suggest that in cabbage petioles and asparagus shoot apexes, LYCH is taken up by anion transport but not by fluid-phase endocytosis in isotonic condition, and uptake of LYCH by fluid-phase endocytosis is restricted to occur only in hypertonic condition.Abbreviations CLSM confocal laser scanning microscope - FDA fluorescein diacetate - LYCH Lucifer Yellow carbohydrazide - PCMSB p-chloromercuribenzenesulfonic acid - TEL50 temperature at which 50% electrolyte leakage occurred  相似文献   

9.
We have studied the effects of liquids of various osmolalities and temperatures on the tracheal vasculature, smooth muscle tone, and transepithelial albumin flux. In 10 anesthetized dogs a 10- to 13-cm length of cervical trachea was cannulated to allow instillation of fluids into its lumen. The cranial tracheal arteries were perfused at constant flow, with monitoring of the perfusion pressures (Ptr) and the external tracheal diameter (Dtr). Control fluid was Krebs-Henseleit solution (KH) with NaCl added to result in a 325-mosM solution (isotonic). Hypertonic solutions were KH with NaCl (warm hypertonic) or glucose (hypertonic glucose) added to result in a 800-mosM solution. All solutions were at 38 degrees C, with isotonic and the hypertonic NaCl solutions also given at 18 degrees C (cold isotonic and cold hypertonic). Fluorescent labeled albumin was given intravenously, and the change in fluorescence in the fluid was measured during each 15-min period. Changing from warm isotonic to cold isotonic decreased Dtr and Ptr. Changing from warm isotonic to warm hypertonic or hypertonic glucose decreased Ptr with no change in Dtr. The cold hypertonic responses were not different from cold isotonic responses. Warm hypertonic solution increased albumin flux into the tracheal lumen over a 15-min period to three times that of the control period, persisting for 15 min after replacement with warm isotonic solution. Cooling induces a vasodilation and smooth muscle contraction of the trachea, whereas hypertonic solutions result in vasodilation and, if osmolality is increased with NaCl, an increase in albumin flux into the tracheal lumen.  相似文献   

10.
Sap Concentrations in Halophytes and Some Other Plants   总被引:9,自引:2,他引:7  
Freezing point depression in xylem sap of mangroves was found to range from 0.05 to 0.5 degrees , in desert plants from 0.01 to 0.16 degrees . In crush juices from leaves of Batis and Salicornia, 90% or more of the freezing point depression was made up of sodium and chlorine ions; in mangroves they constituted 50 to 70%, the rest probably being organic solutes. Plants growing in seawater have -30 to -60 atmospheres pressure in the xylem sap. As shown earlier, at zero turgor pressure the intracellular freezing point of the parenchyma cells matches closely the negative pressure in the xylem sap. This agrees with the present data, that the fluid which exudes from the xylem by applying gas pressure on the leaves is practically pure water; freezing point is rarely above 0.01 to 0.02 degrees . To perform this ultrafiltration, the plasma membrane is subjected to a hydrostatic pressure gradient which in some cases may exceed 100 atmospheres.  相似文献   

11.
Differences in colligative properties (freezing point, boiling point, vapor pressure and osmotic behavior) between water in living cells and pure bulk water were investigated by re-evaluating reports of the osmotic behavior of mammalian cells. In five different animal cells, osmotically unresponsive water (OUW) values ranged from 1.1 to 2.2 g per g dry mass. Detailed analysis of human red blood cell (RBC) data indicates a major role for hemoglobin OUW-values, aggregation and packing in cell volume regulation that can be explained for the first time in relevant molecular terms.  相似文献   

12.
Thermal shock and dilution shock as the causes of freezing injury   总被引:7,自引:0,他引:7  
J Farrant  G J Morris 《Cryobiology》1973,10(2):134-140
We suggest that during slow freezing, cellular membranes are altered by the hypertonic solutions produced. This alteration in itself does not cause membrane leakage of normally impermeant solutes but it renders the cells susceptible to solute leakage on the application of a stress, which is provided during freezing by the reduction in temperature (thermal shock) and during thawing by dilution (dilution shock).During slow freezing the effects of cooling rate changes are due to the different times available for the hypertonic solutions to affect the membrane. At a given cooling rate cryoprotective agents reduce the effect on the cells at each temperature during freezing perhaps by reducing the ionic strength. The thermal shock stress during cooling and the dilution shock during thawing thus damages the cells less. With rapid freezing, there is insufficient time for these effects to take place during cooling, which allows the cells to reach low temperatures without thermal shock damage. However, the presence of extracellular ice and the formation of intracellular ice provide hypertonic conditions that render the cells liable to dilution shock on thawing. The slower the rate of thawing of rapidly cooled cells the greater will be the damage from this dilution shock.  相似文献   

13.
Effect of hydration on the water content of human erythrocytes.   总被引:4,自引:0,他引:4       下载免费PDF全文
An ideal, hydrated, nondilute pseudobinary salt-protein-water solution model of the RBC intracellular solution has been developed to describe the osmotic behavior of human erythrocytes during freezing and thawing. Because of the hydration of intracellular solutes (mostly cell proteins), our analytical results predict that at least 16.65% of the isotonic cell water content will be retained within RBCs placed in hypertonic solutions. These findings are consistent not only with the experimental measurements of the amount of isotonic cell water retained within RBCs subjected to nonisotonic extracellular solutions (20-32%) but also with the experimental evidence that all of the water within RBCs is solvent water. By modeling the RBC intracellular solution as a hydrated salt-protein-water solution, no anomalous osmotic behavior is apparent.  相似文献   

14.
The functions of prolactin in the fetus remain speculative. No obvious physiological role has been found for the prolactin present in the fetal or maternal plasma and amniotic fluid compartments. The aim of the present study was to investigate changes in fetal plasma prolactin following intracerebroventricular (i.c.r.) administration to the fetus of artificial cerebrospinal fluid of different tonicities. A lateral ventricle catheter was placed in 11 fetuses at 107-128 days of gestation. Either isotonic artificial cerebrospinal fluid (300 mOsm.1(-1);n = 9), 15% polyethylene glycol (340 mOsm.1(-1);n = 5), or 7% distilled water in isotonic artificial cerebrospinal fluid (270 mOsm.1(-1);n = 9) was infused i.c.v. at 35 mu1.min-1 for 240 min. At 180 min thyrotropin releasing hormone (TRH) was administered through a fetal a fetal jugular catheter. Fetal carotid arterial blood gases, plasma osmolality and concentrations of prolactin, vasopressin (AVP), and norepinephrine (NE) were measured. Administration of hypotonic artificial cerebrospinal fluid produced an increase in fetal plasma prolactin from 46.6 +/- 36 ng.ml-1 at 0 min to 83.3 +/- 49 ng.ml-1 at 180 min (mean +/- SEM; P less than 0.05). No changes in either AVP or NE were observed. Administration of hypertonic artificial cerebrospinal fluid produced a decrease in plasma prolactin from 85 +/- 57 at time 0 to 49 +/- 35 at 180 min (P less than 0.05). No changes in either AVP or NE were observed. Fetal plasma prolactin, AVP, and NE did not change during control infusion of isotonic artificial cerebrospinal fluid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have studied the hematocrit under the hypertonic condition, on the basis of theoretical considerations and available experimental data, for swine red cells and ghosts. Experimentally obtained exponential behavior for red cells and quadratic behavior of the hematocrit for ghosts were explained reasonably by the theory. From fittings of experimental data to the theoretical equations, elastic coefficients of red blood cells and red cell ghosts, both near the isotonic condition and in the high osmolarity range, were determined.  相似文献   

16.
The application of Ca2+ mobilizing secretagogues to rat parotid acini results in a significant decrease in cell volume (15-30%) due to isotonic salt loss. It is often assumed that the effects of such an isotonic volume decrease can be mimicked by anisotonic cell shrinkage. We demonstrate that the Na+-K+-2Cl- cotransporter in these cells is up-regulated by Ca2+ mobilizing secretagogues as well as by cell shrinkage in hypertonic media. However, we find that although the protein kinase inhibitors staurosporine (0.3 M) and K252a (0.6 M) significantly blunt the latter up-regulation, they are without effect on the former. These observations suggest that hypertonic and isotonic shrinkage do not result in the activation of the same intracellular signalling pathways, and indicate that anisotonic volume perturbations may not provide good experimental models of physiologic isotonic volume changes.  相似文献   

17.
The objective of this study was to determine the influence of freezing versus hypertonic stress on the ATPase activity and polypeptide profile of the plasma membrane of nonacclimated winter rye leaves (Secale cereale L. cv Puma). Exposure of leaves to hypertonic sorbitol solutions resulted in a similar extent of injury as did freezing to subzero temperatures that resulted in equivalent osmotic stresses. When isolated with a two-phase partition system of aqueous polymers, the plasma membrane fractions of control, frozen, or hypertonically stressed leaves were of similar purity as judged by the distribution of marker enzyme activities. When assayed in the presence of Triton X-100 (0.05% w/w), ATPase activity was decreased only slightly in plasma membrane fractions isolated from either frozen or hypertonically stressed leaves. In contrast, the specific ATPase activity of the plasma membrane fractions assayed in the absence of Triton X-100 increased following freezing or hypertonic stress. As a result, the Triton X-100 stimulation of the ATPase activity decreased significantly from sixfold in control leaves to threefold in lethally stressed leaves and reflects an increase in the permeability of the plasma membrane vesicles. The increased permeability was also manifested as a decrease in H+-transport following exposure to freezing or hypertonic stress. Both freezing and hypertonic exposure at subzero temperatures altered the polypeptide profile of the plasma membrane, but with the exception of one polypeptide, there was no difference between the two treatments.  相似文献   

18.
Success of a cryosurgical procedure, i.e., maximal cell destruction, requires that the cooling rate be controlled during the freezing process. Standard cryosurgical devices are not usually designed to perform the required controlled process. In this study, a new cryosurgical device was developed which facilitates the achievement of a specified cooling rate during freezing by accurately controlling the probe temperature variation with time. The new device has been experimentally tested by applying it to an aqueous solution of mashed potatoes. The temperature field in the freezing medium, whose thermal properties are similar to those of biological tissue, was measured. The cryoprobe temperature was controlled according to a desired time varying profile which was assumed to maximize necrosis. The tracking accuracy and the stability of the closed loop control system were investigated. It was found that for most of the time the tracking accuracy was excellent and the error between the measured probe temperature and the desired set point is within +/- 0.4 degrees C. However, noticeable deviations from the set point occurred due to the supercooling phenomenon or due to the instability of the liquid nitrogen boiling regime in the cryoprobe. The experimental results were compared to those obtained by a finite elements program and very good agreement was obtained. The deviation between the two data sets seems to be mainly due to errors in positioning of the thermocouple junctions in the medium.  相似文献   

19.
An investigation was carried out on the post-thaw survival of unprotected human heteroploid EUE cells, either maintained in isotonic medium (0.137 M NaCl) or adapted to hypertonicity (0.356 M NaCl) and frozen in medium with an increased concentration of NaCl. A fivefold increase in the survival fraction of the adapted cells in comparison with the unadapted ones was observed when cells were frozen in isotonic medium. When cells were frozen in hypertonic medium (0.356 M NaCl), the two cell types exhibit comparable survival values. The results are discussed, with special attention to cell defense mechanisms against freezing injury.  相似文献   

20.
The ability of a range of extenders to cryopreserve ram spermatozoa was tested. The extenders were modified by the inclusion of citrate, Tris buffer, trehalose, and EDTA. Ejaculates from three Pampinta rams were evaluated and pooled at 30 degrees C. The semen was diluted to contain 1 x 10(9) cells/mL, cooled to 5 degrees C, loaded into 0.25-mL straws, frozen and stored in liquid nitrogen. Evaluation was based on the hypoosmotic swelling test (HOS test), electron microscopy, and biochemical parameters such as lipid peroxidation and reduced and total glutathione levels, all measured after thawing. The HOS test indicated that the percentage of intact plasma membranes after freezing and thawing was significantly higher for the hypertonic extender containing trehalose (T), compared with an extender containing trehalose+EDTA (TE) or an isotonic Tris extender (B) (p < 0.05). Membrane evaluation by ultramicroscopy also indicated better sperm cryopreservation in extender T compared with the others, and there was a significant reduction in the number of damaged membranes (27%, p < 0.0002). The level of reduced glutathione was significantly higher after sperm cryopreservation in either hypertonic diluent (T and TE) with respect to the isotonic extender B, immediately after thawing (12%) and after a 3-h post-thawing thermotolerance test at 37 degrees C (17%, p = 0.007). Total glutathione levels did not show statistical differences among the extenders. After 3h post-thawing incubation at 37 degrees C, lipid peroxide levels in spermatozoa were statistically lower for T than TE (35%) or isotonic extender B (44%) (p = 0.002). Taken together these results indicate a reduction in the oxidative stress provoked by freezing and thawing when semen is cryopreserved in extender T. The antioxidant properties of extender T may be related to its effectiveness in membrane cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号