首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell suspension cultures ofTaxus chinensis, with 20, 40 and 100 mg fungal elicitor l–1 from Aspergillus niger, underwent rapid cell death after 24 h, which was about 2, 3.7 and 5-fold of that of the control. At the same time, Taxol production was increased, respectively, to about 5, 8 and 3-fold of that of the control. Inhibition of phenolics biosynthesis resulted in a 150% increase in cell death but a 54% decrease in Taxol production compared with 40 mg elicitor l–1 alone. O2-free N2 inhibited cell death but had little effect on Taxol production as induced by 40 mg fungal elicitor l–1.  相似文献   

2.
When Ti transformed Salvia miltiorrhiza cells werecultured in a MS-NH4 medium (MS without ammonium nitrate, containing30 g/L sucrose) at 25 °C in darkness for 18d, the total tanshinone (cryptotanshinone and tashinone IIA)contents in cultures were 12.23 mg/L and 15.07 mg/Lfor yeast elicitor (4 g/L), and yeast elicitor plus 200mol/L salicylic acid (SA) treated cultures, respectively,whereas only trace amounts of tanshinone were detected in the control or SAtreated cells. To explore the hormonal background concerning these phenomena,endogenous phytohormones were determined using ELISA kits. We found that ABA andiPAs contents in yeast elicitor plus SA treated cell cultures were increased 2.8to 9.8-fold and 3.6 to 5.8-fold respectively, while contents of GA1and IAA were decreased by 13.2%–56.9% and 34.8%–74.6% respectively.This suggests that higher levels of ABA and iPAs combined with lower levels ofGA1 and IAA inhibit the growth of cells, then probably stimulate thetanshinone production.  相似文献   

3.
Nitrogen fixation in perennial forage legumes in the field   总被引:13,自引:0,他引:13  
Nitrogen acquisition is one of the most important factors for plant production, and N contribution from biological N2 fixation can reduce the need for industrial N fertilizers. Perennial forages are widespread in temperate and boreal areas, where much of the agriculture is based on livestock production. Due to the symbiosis with N2-fixing rhizobia, perennial forage legumes have great potential to increase sustainability in such grassland farming systems. The present work is a summary of a large number of studies investigating N2 fixation in three perennial forage legumes primarily relating to ungrazed northern temperate/boreal areas. Reported rates of N2 fixation in above-ground plant tissues were in the range of up to 373 kg N ha–1 year–1 in red clover (Trifolium pratense L.), 545 kg N ha–1 year–1 in white clover (T. repens L.) and 350 kg N ha–1 year–1 in alfalfa (Medicago sativa L.). When grown in mixtures with grasses, these species took a large fraction of their nitrogen from N2 fixation (average around 80%), regardless of management, dry matter yield and location. There was a large variation in N2 fixation data and part of this variation was ascribed to differences in plant production between years. Studies with experiments at more than one site showed that also geographic location was an important source of variation. On the other hand, when all data were plotted against latitude, there was no simple correlation. Climatic conditions seem therefore to give as high N2 fixation per ha and year in northern areas (around 60°N) as in areas with a milder climate (around 40°N). Analyzing whole plants or just above-ground plant parts influenced the estimate of N2 fixation, and most reported values were underestimated since roots were not included. Despite large differences in environmental conditions, such as N fertilization and geographic location, N2 fixation (Nfix; kg N per ha and year) was significantly (P<0.001) correlated to legume dry matter yield (DM; kg per ha and year). Very rough, but nevertheless valuable estimations of Nfix in legume/grass mixtures (roots not considered) are given by Nfix = 0.026DM + 7 for T. pratense, Nfix = 0.031DM + 24 for T. repens, and Nfix = 0.021DM + 17 for M. sativa.  相似文献   

4.
Bradyrhizobium japonicum USDA 143 grew chemoorganotrophically under anoxic conditions with exogenous N2O as the sole terminal electron acceptor. Cell growth and dissimilatory N2O reduction were significantly inhibited by C2H2 when either N2O or N2O plus NO 3 served as terminal electron acceptor(s). Reduction of N2O accounted for 20% of the energy for cell growth in cultures supplied with NO 3 as the terminal electron acceptor. Nitrous oxide was produced stoichiometrically in cultures containing NO 3 and C2H2, but cell growth was proportionately reduced when compared with cultures supplied with an equal amount of NO 3 . Exogenous N2O delayed the reduction of NO 3 in cultures supplied with both electron acceptors. Direct amperometric monitoring of N2O respiration showed a specific activity of 0.082±0.004 moles N2O/min/mg cell protein, and azide inhibited cell respiration.  相似文献   

5.
Naramoto  M.  Han  Q.  Kakubari  Y. 《Photosynthetica》2001,39(4):545-552
Photosynthetic induction responses to a sudden increase in photosynthetic photon flux density (PPFD) from lower background PPFD (0, 25, 50, and 100 mol m–2 s–1) to 1 000 mol m–2 s–1 were measured in leaves of Fagus crenata, Acer rufinerve Siebold & Zucc., and Viburnum furcatum growing in a gap and understory of a F. crenata forest in the Naeba mountains. In the gap, A. rufinerve exhibited more than 1.2-fold higher maximum net photosynthetic rate (P Nmax) than F. crenata and V. furcatum. Meanwhile, in the understory F. crenata exhibited the highest P Nmax among the three species. The photosynthetic induction period required to reach P Nmax was 3–41 min. The photosynthetic responses to increase in PPFD depended on the background PPFD before increase in PPFD. The induction period required to reach P Nmax was 2.5–6.5-fold longer when PPFD increased from darkness than when PPFD increased from 100 mol m–2 s–1. The induction period was correlated with initial P N and stomatal conductance (g s) relative to maximum values before increase in PPFD. The relationship was similar between the gap and the understory. As the background PPFD increased, the initial P N and g s increased, indicating that the degrees of biochemical and stomata limitations to dynamic photosynthetic performance decreased. Therefore, photosynthetic induction responses to increase in PPFD became faster with the increasing background PPFD. The differences in time required to reach induction between species, as well as between gap and understory, were mainly due to the varying of relative initial induction states in P N and g s at the same background PPFD.  相似文献   

6.
Jia  Yinsuo  Gray  V.M. 《Photosynthetica》2003,41(4):605-610
We determined for Vicia faba L the influence of nitrogen uptake and accumulation on the values of photon saturated net photosynthetic rate (P Nmax), quantum yield efficiency (), intercellular CO2 concentration (C i), and carboxylation efficiency (C e). As leaf nitrogen content (NL) increased, the converged onto a maximum asymptotic value of 0.0664±0.0049 mol(CO2) mol(quantum)–1. Also, as NL increased the C i value fell to an asymptotic minimum of 115.80±1.59 mol mol–1, and C e converged onto a maximum asymptotic value of 1.645±0.054 mol(CO2) m–2 s–1 Pa–1 and declined to zero at a NL-intercept equal to 0.596±0.096 g(N) m–2. fell to zero for an NL-intercept of 0.660±0.052 g(N) m–2. As NL increased, the value of P Nmax converged onto a maximum asymptotic value of 33.400±2.563 mol(CO2) m–2 s–1. P N fell to zero for an NL-intercept of 0.710±0.035 g(N) m–2. Under variable daily meteorological conditions the values for NL, specific leaf area (L), root mass fraction (Rf), P Nmax, and remained constant for a given N supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. L increased with increasing N supply or with increasing NL.  相似文献   

7.
Summary The steady-state concentration of M. trichosporium OB3b increased about two-fold in the continuous culture when the feeding medium was supplemented by ferrous sulphate (50mg/L) and citric acid (100mg/L) at a steady state. In batch and continuous cultures, the cell growth was significantly inhibited by excess N-sources (NH4OH, NH4Cl, NH4NO3, HNO3, and NaNO3) and ammonium N-sources were more inhibitory. Both volumetric O2 transfer coefficient and specific O2 uptake rate increased monotonously in an extensive range of air flow rate (0.1–7 vvm) and the methane interfered with the O2 transfer even at very low flow rates (0.01–0.1 vvm).  相似文献   

8.
Several studies suggest that Muta™Mouse is insensitive to clastogens, including the accompanying paper by Mahabir et al., which describes a study with bleomycin, camptothecin, m-AMSA (4′-(9-acridinylamino)-methanesulfon-m-anisidide) and its ortho-analogue, o-AMSA (4′-(9-acridinylamino)-methanesulfon-o-anisidide). Only camptothecin was clastogenic in Muta™Mouse and none of these four compounds induced mutations at the lacZ locus. However, to improve exposure, dose range-finding studies were performed in CD2F1 mice, the parental strain of Muta™Mouse. Male CD2F1 mice (n = 3) were treated with bleomycin (25–100 mg/kg bw, p.o. and i.p.), camptothecin (1–10 mg/kg bw p.o.) and m-AMSA (10–50 mg/kg bw p.o. and 1–5 mg/kg bw i.p.) for 5 days and blood was sampled on day 3 and/or day 6 for analysis by flow cytometry to determine % MN-RETs. Camptothecin (1 mg/kg bw, day 6) induced a 3.6-fold increase in % MN-RET (P < 0.05) but was toxic at higher doses. All day-3 camptothecin samples were positive (P < 0.05). Bleomycin was negative when administered p.o. but positive at all doses on both days when given i.p. (P < 0.05) whereas m-AMSA was negative when given i.p. or orally. Based on these results, male Muta™Mouse mice (5 per group) were dosed daily with bleomycin (50 mg/kg bw) for 5 days or with camptothecin (5 mg/kg bw) for 2 days. Peripheral blood was sampled 24 h after the final dose in each group and tissues were sampled 37 days later. Both compounds induced significant increases in % MN-RET, but only bleomycin induced a significant increase in MF (6-fold in liver, 4.5-fold in kidney and 2-fold in lung) compared with the untreated control. These studies support the view that Muta™Mouse is insensitive to compounds where the genotoxic mechanism of action is predominantly clastogenesis, but demonstrates that the peripheral blood micronucleus test is a useful adjunct to the transgenic gene-mutation assay.  相似文献   

9.
Human biotransformation of the industrial solvent N,N-dimethylformamide gives raise to N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) which has the longest half-life (about 23 h) among urinary metabolites of N,N-dimethylformamide. It could be used for monitoring industrial exposure over several workdays, by measuring it in urine samples collected at the end of the working week. This is consistent with the suggestions of the American Conference of Governmental Industrial Hygienists, which established a limit of 40 mg/l for the year 2000. An easy, cheap and user-friendly method has been developed for determination of urinary AMCC. Unlike currently available methods, it requires neither a time-consuming preparation phase nor gas chromatographic analysis with a nitrogen-phosphorus or mass detector. The method uses high-performance liquid chromatography (HPLC), with an UV detector at 436 nm. A 10-μl volume of urine is added to a carbonate–hydrogen carbonate buffer and mixed with a dabsyl chloride solution in acetonitrile. The reaction between AMCC and the reagent is performed at 70°C for 10 min. The ‘dabsylated’ product is stable for at least 12 h. After brief centrifugation, the solution is ready for HPLC analysis using a C18 column (250×4.6 mm, 5 μm). The method is sensitive (detection limit 1.8 mg/l) and specific. It identified urinary AMCC in urine of 40 subjects not exposed to N,N-dimethylformamide with a median concentration of 3.9 mg/l. In urine samples from 20 workers exposed to N,N-dimethylformamide (5–40.8 mg/m3), AMCC concentrations ranged from 16 to 170 mg/l. Industrial toxicology laboratories with limited instrumentation will be able to use it in the biological monitoring of workers exposed to N,N-dimethylformamide.  相似文献   

10.
Strains of filamentous, non-heterocystous cyanobacteria from the Pasteur Culture Collection (PCC), able to synthesize nitrogenase under anaerobic test conditions, were tested for growth with N2 as sole nitrogen source at low O2 partial pressure (less than 0.05%). Plectonema boryanum (PCC 73110) exhibited exponential growth under these conditions. This capacity was restricted to light intensities not exceeding 500 lux. Growth rates were 0.014/h at 200 and 0.023 at 500 lux and similar to those of anaerobic and aerobic control cultures with nitrate as N-source. For N2-fixing cultures incubated at 200 and 500 lux, acetylene reduction rates were 4–8 and 5–14 nmol C2H4 per mg protein per min, respectively. The ratio of phycocyanine to chlorophyll was higher (200 lux) or slightly reduced (500 lux) in N2-fixing cultures as compared to control cultures with nitrate as N-source. On the basis of epifluorescence microscopy and microfluorimetry, no differences in pigment contents were found between individual cells or filaments of N2-fixing cultures. Also no noteworthy differences were observed between the pycobiliprotein composition of individual cells in N2 fixing cultures as compared to nitrate-grown controls. Thus the observed exponential growth of P. boryanum at low light intensities implies simultaneous nitrogen fixation and oxygenic photosynthesis. Additional continuous culture experiments showed that N2-fixing exponential growth was dependent on O2 partial pressures lower than 0.2–0.4%.The other strains tested (PCC 6412, 6602, 7403, 7104) did not grow under such conditions.Abbreviations Chl chlorophyll - PBP phycobiliproteins - PC phycocyanin - PCC Pasteur Culture Collection - OD optical density  相似文献   

11.
In consideration of their origin the adaptive strategies of the evergreen species of the Mediterranean maquis were analysed. Rosmarinus officinalis L., Erica arborea L., and Erica multiflora L. had the lowest net photosynthetic rate (PN) in the favourable period [7.8±0.6 mol(CO2) m–2s–1, mean value], the highest PN decrease (on an average 86 % of the maximum) but the highest recovery capacity (>70 % of the maximum) at the first rainfall in September. Cistus incanus L. and Arbutus unedo L. had the highest PN during the favourable period [15.5±5.2 mol(CO2) m–2s–1, mean value], 79 % decrease during drought, and a lower recovery capacity (on an average 54 %). Quercus ilex L., Phillyrea latifolia L., and Pistacia lentiscus L. had an intermediate PN in the favourable period [9.2±1.3 mol(CO2) m–2s–1, mean value], a lower reduction during drought (on an average 63 %), and a range from 62 % (Q. ilex and P. latifolia) to 39 % (P. lentiscus) of recovery capacity. The Mediterranean species had higher decrease in PN and stomatal conductance during drought and a higher recovery capacity than the pre-Mediterranean species. Among the pre-Mediterranean species, P. latifoliahad the best adaptation to long drought periods also by its higher leaf mass per area (LMA) which lowered leaf temperature thus decreasing transpiration rate during drought. Moreover, its leaf longevity determined a more stable leaf biomass during the year. Among the Mediteranean species, R. officinalis was the best adapted species to short drought periods by its ability to rapidly recover. Nevertheless, R. officinalis had the lowest tolerance to high temperatures by its PN dropping below half its maximum value when leaf temperature was over 33.6°C. R. officinalismay be used as a bioindicator species of global change.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

12.
Selenium (Se) is an important metalloid with industrial, environmental, biological and toxicological significance. Excessive selenium in soil and water may contribute to environmental selenium pollution, and affect plant growth and human health. By using Vicia faba micronucleus (MN) and sister chromatid exchange (SCE) tests, possible genotoxicity of sodium selenite and sodium biselenite was evaluated in this study. The results showed that sodium selenite, at concentrations from 0.01 to 10.0 mg/L, induced a 1.9–3.9-fold increase in MN frequency and a 1.5–1.6-fold increase in SCE frequency, with a statistically significantly difference from the control (P < 0.05 and 0.01, respectively). Sodium selenite also caused mitotic delay and a 15–80% decrease in mitotic indices (MI), but at the lowest concentration (0.005 mg/L), it slightly stimulated mitotic activity. Similarly, the frequencies of MN and SCE also increased significantly in sodium biselenite treated samples, with MI decline only at relatively higher effective concentrations. Results of the present study suggest that selenite is genotoxic to V. faba root cells and may be a genotoxic risk to human health.  相似文献   

13.
Annual inputs of symbiotic N2-fixation associated with 3 species of alpine Trifolium were estimated in four alpine communities differing in resource supplies. We hypothesized that fixation rates would vary according to the degree of N, P, and water limitation of production, with the higher rates of fixation in N limited communities (dry meadow, moist meadow) and lower rates in P and water limited communities (wet meadow, fellfield). To estimate N2-fixation rates, natural abundance of N isotopes (15N) were measured in field collected Trifolium and reference plants and in Trifolium plants grown in N-free medium in a growth chamber. All three Trifolium species relied on a large proportion of atmospherically-fixed N2 to meet their N requirements, ranging from 70 to 100%. There were no apparent differences in the proportion of plant N derived from fixation among the communities, but differences in the contribution of the Trifolium species to community cover resulted in a wide range of annual N inputs from fixation, from 127 mg m–2 year–1 in wet meadows to 810 mg m–2 year–1 in fellfields. Annual spatially integrated input of symbiotic N2-fixation to Niwot Ridge, Colorado was estimated at 490 mg m–2 year–1 (5 kg ha–1 year–1), which is relatively high in the context of estimates of net N mineralization and N deposition.  相似文献   

14.
Protistan community grazing rates upon both bacterioplankton and autotrophic picoplankton were estimated using fluorescently-labeled prey and by measurement of extracellular hydrolysis of 4-methylumbelliferyl (MUF) -N-acetylglucosaminide in a eutrophic reservoir and an oligo-mesotrophic lake during phytoplankton blooms. In addition, enzyme methods were optimized in bacterivorous flagellate cultures by two enzyme assays, based on fluorometric detection of protistan digestive activity, which were compared and calibrated independently against flagellate bacterivory. Enzymatic hydrolyses of MUF -N,N,N-triacetylchitotriose and MUF -N-acetylglucosaminide were measured in cell-free (sonicated) and whole-cell (unsonicated) samples. The hydrolysis of both substrates, using the whole-cell enzyme assay at in situ pH, was correlated significantly with total grazing rate of Bodo saltans. Thus the whole-cell enzyme assay with MUF -N-acetylglucosaminide was used for freshwater samples. High-affinity (K m < 1 mol 1–1) and low-affinity (K m > 100 mol 1–1) enzymes were distinguished kinetically in most samples from both systems studied. Activities (V max ) of the high-affinity enzyme varied from 0.24 to 1.43 nmol 1–1 h–1. Protistan community grazing on bacterioplankton was in the range of 0.15–1.36 g C 1–1 h–1. both for lake and reservoir, the differences being observed in grazing on picocyanobacteria (lake, 0.03-0.22 g C 1–1 h–1. reservoir, 0.35–1.56 g C 1–1) h–1. The enzyme activities were correlated significantly with the protistan grazing both on bacterioplakton (r s = 0.62, P < 0.001) and total procaryotic picoplankton (the sum of organic carbon grazed from bacteria and picocyanobacteria, r s = 0.73, P < 0.001) in the eutrophic reservoir. Weaker relationships (r s = 0.42) with a lower slope were found for the oligo-mesotrophic lake. Ingestion rate studies are time-consuming and the digestive enzyme assay with MUF -N-acetylglucosaminide presents a rapid alternative for estimating total protistan prokaryotic picoplanktivory in freshwaters.  相似文献   

15.
Summary Extracellular -N-acetylhexosaminidase in basic specific activity 1.5 U/mg protein was induced 15 – 35 times (up to 50 U/mg protein) by mixture of chitooligomers (crude chitin hydrolysate), 10 – 20 times (20 – 30 U/mg protein) by N-acetylglucosamine, and 10 times (14 U/mg protein) by chitosan in Aspergillus oryzae. Addition of NaCl (15 – 23 g/l) to the cultivation medium enhanced the induction in 10 – 20 %.  相似文献   

16.
Effects of picolinic acid (2-pyridinecarboxylic acid) and chromium(III) picolinate was studied on the chromium (Cr) accumulation of fodder radish (Raphanus sativus L. convar. oleiformis Pers., cv. Leveles olajretek) and komatsuna (Brassica campestris L. subsp. napus f. et Thoms. var. komatsuna Makino, cv. Kuromaru ) grown in a pot experiment. Control cultures, grown in an uncontaminated soil (UCS; humous sand with pHKCl 7.48, sand texture with 12.4% clay+silt content, organic carbon 0.56%, CaCO3 2.2%, CEC 6.2 cmolc kg–1, Cr 10.6 mg kg–1), accumulated low amounts of chromium (less than 5.4 g g–1) in their roots or shoots. When this UCS was artificially contaminated with 100 mg kg–1 Cr (CrCl3) later picolinic acid treatment promoted the translocation of chromium into the shoots of both species. In fodder radish shoots Cr concentration reached 30.4 g g–1 and in komatsuna shoots 44.5 g g–1. Application of ethylene diamine tetra-acetic acid (EDTA) to this Cr contaminated soil had similar effect to picolinic acid. When the UCS was amended with leather factory sewage sediment (which resulted in 853 mg kg–1 Cr in soil), Cr mobilization was observed only after repeated soil picolinic acid applications. From a galvanic mud contaminated soil (brown forest soil with pHKCl 6.77, loamy sand texture with 26.6% clay+silt content, organic carbon 1.23%, CaCO3 0.7%, CEC 24.5 cmolc kg–1, Cd 5.0 mg kg–1, Cr 135 mg kg–1, and Zn 360 mg kg–1) the rate of Cr mobilization was negligible, only a slight increase was observed in Cr concentration of fodder radish shoots after repeated picolinic acid treatments of soil. Presumably picolinic acid forms a water soluble complex (chromium(III) picolinate) with Cr in the soil, which promotes translocation of this element (and also Cu) into the shoots of plants. The rate of complex formation may be related to the binding forms and/or concentration of Cr in soil and also to soil characteristics (i.e. pH, CEC), since the rate of Cr translocation was the following: artificially contaminated soil > leather factory sewage sediment amended soil > galvanic mud contaminated soil. Four times repeated 10 mg kg–1 chromium(III) picolinate application to UCS multiplied the transport of chromium to shoots, as compared to single 10 mg kg–1 CrCl3 treatment. This also suggests that chromium(III) picolinate is forming in the picolinic acid treated Cr-contaminated soils, and plants more readily accumulates and translocates organically bound Cr than ionic Cr. Picolinic acid promotes Cr translocation in soil-plant system. This could be useful in phytoextraction (phytoremediation) of Cr contaminated soils or in the production of Cr enriched foodstuffs.  相似文献   

17.
To test the assumption that automobile exhausts contribute to soil mutagenicity, two soils with low levels of mutagenic activities were exposed to traffic exhausts at a heavily charged junction of German motorways (Autobahnen) for 3, 7, 10, 13, 17, 21, and 26 weeks. Indeed, in the presence of a metabolic activation system from rat liver (S9), an average increase of 8 and 9 (4 and 12) revertants per gram per week was found in Salmonella typhimurium TA 98 (TA 100). In the absence of S9, meaningful measurements were impossible on account of a concurrent dose dependent increase of toxicity. No correlation between the increase of mutagenicity and the contents of polycyclic aromatic hydrocarbons (PAH) could be detected. In another series, soils sampled at the roadside and at distances of 10 and 50 m of five roads near Mainz expressed 10–20-fold higher mutagenicity (revertants per gram) under identical test conditions as compared with the average of agricultural soils. Toxic effects, however, again confounded the results and no correlation between the distance from roads and the levels of mutagenicity could be demonstrated. Subsequently, Soxhlet-extraction with the solvent sequence dichloromethane, acetone, and toluene/diethylketone was found to be an optimum procedure for soils at roadsides. The mass balance of solvent fractionation of such soils revealed that <2% each belonged to organic acids and bases, 4% to fractions designed polar neutrals, 8% to polar aromatics, 7% to dichloromethane solubles, and 79% to cylohexane solubles, among them 63% acetone soluble compounds. The major part of mutagenicity (55–65%) was present in the fraction of polar aromatics, followed by polar neutrals and the acetone subfraction of cyclohexane solubles (10% each) summarizing the results obtained with S. typhimurium TA 98, TA 98NR, YG 1021, YG 1024, TA 100, YG 1026, and YG 1029 with and without addition of S9. The modified tester strains, either deficient in nitroreductase (TA 98NR) or overproducing nitroreductase (YG 1021, 1026) or O-acetyl-transferase (YG 1024, 1026), indicated a major contribution of nitroarenes to soil mutagenicity. With respect to mutagenic PAH, high pressure liquid chromatography (HPLC) revealed that >90% of dibenz[a,h]anthracene (4.18 mg/kg soil), benzo[a]pyrene (1.96 mg), benzofluoranthenes (0.14 mg), and benz[a]anthracene (0.18 mg) were present in the acetone subfraction of cyclohexane solubles. Concentrations and mutagenic activities, however, did not correlate. Additional preparative and analytical HPLC of the solvent fractions of polar neutrals and polar aromatics, resulted in the tentative identification of 2-nitrofluorene. Analysis of the vertical profile of soil revealed an increase of mutagenicity per gram from the surface to a maximum at 5–15 cm depth and a subsequent decrease with very little activity remaining deeper than 35 cm. In human lymphocyte cultures, the fraction of polar aromatics, 0.01–0.3 μg/ml, induced 11.27±4.76–20.70±6.19 sister-chromatid exchanges (SCE) per cell in the absence of S9 (solvent control: 10.16±4.83 SCE per cell) and 12.77±6.53–17.87±4.93 SCE per cell in the presence of S9 (solvent control: 8.37±3.92 SCE per cell). However, no activities could be detected in the fractions of polar neutrals and non-polar neutrals. Again, negative results were obtained in the in vivo mouse bone marrow micronucleus assay at 2000 mg/kg p.o. with all fractions.  相似文献   

18.
Summary The growth of Acetivibrio cellulolyticus in 2.5 l batch cultures was optimized by controlling the growth pH at 6.7, the dissolved inorganic sulphide concentration at 0.4–0.6 mM, and by constant removal of hydrogen from the cultures by sparging with N2/CO2 or N2 gas. An initial ethanol concentration of 0.15% (w/v) in cellobiose media resulted in specific growth rates which were reduced by about 75% compared to growth rates of 0.17 h–1 in control cultures. Acetivibrio cellulolyticus had to be adapted for growth on glucose and 14C-radiotracer studies indicated that glucose was metabolized by the Embden-Meyerhof pathway. The specific growth rate (=0.03h–1) and molar growth yield (Yglucose=21.5) were considerably lower than those obtained (=0.17 h–1, Ycellobiose=68.9) in cellobiose media. A YATP of 12.8 was obtained during growth on cellobiose. The mol product formed per mol Avicel cellulose fermented (on anhydroglucose equivalent basis) were 3.70 H2, 2.64 CO2, 0.73 acetate, 0.39 ethanol and 0.03 total soluble sugars on glucose basis. Maximum cellulase activity was observed in cellulose-grown cultures.National Research council of Canada No. 20826  相似文献   

19.
Summary We have developed an improved artificial seed system by using a hot-water extract from a marine cyanobacterium, Synechococcus sp. NKBG 042902. Carrot somatic embryos (Daucus carota L.) were divided into two size categories (> 800 m and 425–800 m). High frequency germination (91%) was obtained using the large somatic embryos encapsulated in calcium alginate gel containing 400 mg 1–1 of extract. This compares to 35% without addition of the extract. A non-dialysate fraction of the extract showed strong germination-promoting activity compared with a dialysate fraction. The germination frequency of artificial seeds containing 100 mg 1–1 of non-dialysate fraction was more than 90%. Almost all germinating artificial seeds developed into plantlets within 4 days. We also achieved high frequency germination (60%) of artificial seeds encapsulating small somatic embryos (425–800 m) that contained 100 mg 1–1 of non-dialysate (control 9%). Although the small somatic embryos showed a lower germination frequency than the large embryos, the plantlet development process in these seeds was far more vigorous. Such a high germination frequency has not previously been reported for a carrot artificial seed system.  相似文献   

20.
Leaf explants of Stevia rebaudiana Bertoni (Compositae), an herb which produces the sweet ent-kaurene glycoside stevioside, were cultured in Murashige and Skoog medium with vitamins, sucrose (30 g l–1), agar (0.9% w/v) and supplemented with naphthaleneacetic acid (NAA, 0.5 mg l–1) and benzylaminopurine (BAP, 0.5 mg l–1). These conditions yielded friable callus cultures. Differentiation of the callus tissue was then achieved by eliminating the agar and modulating the medium's hormone concentrations. Thus, medium containing increased auxin concentration (1.0 mg l–1) and no cytokinin or increased cytokinin (1.0 mg l–1) and no auxin yielded root or shoot cultures respectively. Supplementation of the shoot medium with NAA (1.0 mg ml–1) induced shoot cultures to grow roots thereby differentiating into rooted-shoot cultures. Only the rooted-shoot cultures tasted sweet. Feedings of [2-14C]acetic acid to callus, shoot or rooted-shoot cultures demonstrated that only the rooted-shoot cultures are capable of de novo biosynthesis of the aglycone moiety of stevioside (steviol). In addition, [methyl-3H(N)steviol feedings to shoot or rooted-shoot cultures illustrated that both types of cultures are capable of the glycosylation reaction. The ability of these tissues to glycosylate steviol to stevioside was also demonstrated employing crude enzyme preparations derived from shoot or rooted-shoot cultures. These results suggest that stevioside biosynthesis is a function of tissue differentiation since both roots and leaves are required for cultured S. rebaudiana to biosynthesize stevioside from acetate, while the final biosynthetic steps can be performed at all levels of differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号