首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Amiloride-sensitive sodium channels mediate sodium entry across the apical membrane of epithelial cells in variety of tissues. The rate of Na(+) entry is controlled by the regulation of the epithelial sodium channel (ENaC) complex. Insertion/retrieval of the ENaC complex into the apical membrane as well as direct kinetic effects at the single channel level are recognized mechanisms of regulation. Recent data suggest that the syntaxin family of targeting proteins interact with and functionally regulate a number of ion channels and pumps. To evaluate the role of these proteins in regulating ENaC activity, we co-expressed rat ENaC cRNA (alpha, beta, gamma subunits) with syntaxin 1A or 3 cRNAs in Xenopus oocytes. Basal ENaC currents were inhibited by syntaxin 1A and stimulated by syntaxin 3. Both syntaxin 1A and syntaxin 3 could be co-immunoprecipitated with ENaC subunit proteins, suggesting physical interaction. Interestingly, immunofluorescence data suggest that with either syntaxin isoform the ENaC-associated epifluorescence on the oocyte surface is enhanced. These data indicate that (i) both syntaxin isoforms increase the net externalization of the ENaC channel complex, (ii) that the functional regulation is isoform specific, and (iii) suggest that ENaC may be regulated through mechanisms involving protein-protein interactions.  相似文献   

3.
4.
The p63 gene supports stem cell proliferation and regulation in epithelial cells. In this study, corneal epithelial cells were cultured on human amniotic membrane (HAM) and investigated for p63 and its isoform genes. Human limbal biopsies obtained from cadaveric donor eyes were cultivated on intact and denuded HAM. Transactivation (TA) specific domain was positive in the limbal cells cultured over denuded HAM and negative on others. TAp63α,β,γ isoforms are negative in all the limbal cells cultured on intact, denuded and limbal tissues but not in cornel epithelial tissue. p63α isoform is present in all except on denuded HAM. αβ sharing region is not expressed only in cornel epithelial tissue. γ isoform is expressed in all the samples. ΔNp63α region is present in cells cultured over the intact HAM whereas it is negative on the cells cultured over the denuded HAM. The other isoforms such as ΔNp63β and ΔNp63γ are negative in all samples. The limbal cells cultured over the intact HAM were able to maintain high proliferative potential when compared to denuded HAM. Thus, p63 isoforms plays a biological function to retain the proliferative capacity of corneal epithelial cells and maintains the stemness when cultured on intact HAM.  相似文献   

5.
ErbB4, a member of the epidermal growth factor (EGF) receptor family that can be activated by heregulin beta1 and heparin binding (HB)-EGF, is expressed as alternatively spliced isoforms characterized by variant extracellular juxtamembrane (JM) and intracellular cytoplasmic (CYT) domains. ErbB4 plays a critical role in cardiac and neural development. We demonstrated that ErbB4 is expressed in the ureteric buds and developing tubules of embryonic rat kidney and in collecting ducts in adult. The predominant isoforms expressed in kidney are JM-a and CYT-2. In ErbB4-transfected MDCK II cells, basal cell proliferation and hepatocyte growth factor (HGF)-induced tubule formation were decreased by all four isoforms. Only JM-a/CYT-2 cells formed tubules upon HB-EGF stimulation. ErbB4 was activated by both HRG-beta1 and HB-EGF stimulation; however, compared with HRG-beta1, HB-EGF induced phosphorylation of the 80-kDa cytoplasmic cleavage fragment of the JM-a/CYT-2 isoform. HB-EGF also induced early activation of ERK1/2 in JM-a/CYT-2 cells and promoted nuclear translocation of the JM-a/CYT-2 cytoplasmic tail. In summary, our data indicate that JM-a/CYT-2, the ErbB4 isoform that is proteinase cleavable but does not contain a PI3K-binding domain in its cytoplasmic tail, mediates important functions in renal epithelial cells in response to HB-EGF.  相似文献   

6.
Different isoforms of p120-catenin (p120ctn), a member of the Armadillo gene family, are variably expressed in different tissues as a result of alternative splicing and the use of multiple translation initiation codons. When expressed in cancer cells, these isoforms may confer different properties with respect to cell adhesion and invasion. We have previously reported that the p120ctn isoforms 1 and 3 were the most highly expressed isoforms in normal lung tissues, and their expression level was reduced in lung tumor cells. To precisely define their biological roles, we transfected p120ctn isoforms 1A and 3A into the lung cancer cell lines A549 and NCI-H460. Enhanced expression of p120ctn isoform 1A not only upregulated E-cadherin and β-catenin, but also downregulated the Rac1 activity, and as a result, inhibited the ability of cells to invade. In contrast, overexpression of p120ctn isoform 3A led to the inactivation of Cdc42 and the activation of RhoA, and had a smaller influence on invasion. However, we found that isoform 3A had a greater ability than isoform 1A in both inhibiting the cell cycle and reducing tumor cell proliferation. The present study revealed that p120ctn isoforms 1A and 3A differently regulated the adhesive, proliferative, and invasive properties of lung cancer cells through distinct mechanisms.  相似文献   

7.
Laminins are structurally and functionally major components of the extracellular matrix. Four isoforms of laminins (laminin-1, -2, -5 and -10) are expressed in a specific pattern along the crypt-villus axis of the intestine. Previous works indicated that expression of these isoforms is developmentally regulated and that laminins could modulate the behaviour of intestinal cells, but the exact role of each isoform remained unclear. Here, we report the first systematic analysis of the cellular functions of the four isoforms using the human colon adenocarcinoma Caco2/TC7 cell line as a model. We compared the respective abilities of each isoform to modulate adhesion, proliferation and differentiation of intestinal epithelial cells. We found that the isoforms were functionally distinct, with laminin-10 being the most adhesive substratum, laminin-2, laminin-5 and laminin-10 enhancing cellular proliferation and at the opposite, laminin-1 stimulating intestinal cell differentiation. To begin to characterise the molecular events induced by the different isoforms, we examined by immunofluorescence the intracellular distribution of several nuclear proteins, recently highlighted by a nuclear proteomic approach. We observed clear nucleocytoplasmic redistribution of these proteins, which depended on the laminin isoform. These results provide evidence for a distinct functional role of laminins in intestinal cell functions characterised by specific localisation of nuclear proteins.  相似文献   

8.
Serum- and glucocorticoid-induced kinase 1 (SGK1) is a multifunctional protein kinase that markedly influences various cellular processes such as proliferation, apoptosis, glucose metabolism, and sodium (Na(+)) transport via the epithelial Na(+) channel, ENaC. SGK1 is a short-lived protein, which is predominantly targeted to the endoplasmic reticulum (ER) to undergo rapid proteasome-mediated degradation through the ER-associated degradation (ERAD) system. We show here that the aldosterone-induced chaperone, GILZ1 (glucocorticoid-induced leucine zipper protein-1) selectively decreases SGK1 localization to ER as well as its interaction with ER-associated E3 ubiquitin ligases, HRD1 and CHIP. GILZ1 inhibits SGK1 ubiquitinylation and subsequent proteasome-mediated degradation, thereby prolonging its half-life and increasing its steady-state expression. Furthermore, comparison of the effect of GILZ1 with that of proteasome inhibition (by MG-132) supports the idea that these effects of GILZ1 are secondary to physical interaction of GILZ1 with SGK1 and enhanced recruitment of SGK1 to targets within an "ENaC regulatory complex," thus making less SGK1 available to the ERAD machinery. Finally, effects of GILZ1 knockdown and overexpression strongly support the idea that these effects of GILZ1 are functionally important for ENaC regulation. These data provide new insight into how the manifold activities of SGK1 are selectively deployed and strengthened through modulation of its molecular interactions, subcellular localization, and stability.  相似文献   

9.
Respiratory syncytial virus (RSV) is an important respiratory pathogen that preferentially infects epithelial cells in the airway and causes a local inflammatory response. Very little is known about the second messenger pathways involved in this response. To characterize some of the acute response pathways involved in RSV infection, we used cultured human epithelial cells (A549) and optimal tissue culture-infective doses (TCID(50)) of RSV. We have previously shown that RSV-induced IL-8 release is linked to activation of the extracellular signal-related kinase (ERK) mitogen-activated protein kinase pathway. In this study, we evaluated the upstream events involved in ERK activation by RSV. RSV activated ERK at two time points, an early time point consistent with viral binding and a later sustained activation consistent with viral replication. We next evaluated the role of protein kinase C (PKC) isoforms in RSV-induced ERK kinase activity. We found that A549 cells contain the Ca(2+)-dependent isoforms alpha and beta1, and the Ca(2+)-independent isoforms delta, epsilon, eta, mu, theta, and zeta. Western analysis showed that RSV caused no change in the amounts of these isoforms. However, kinase activity assays demonstrated activation of isoform zeta within 10 min of infection, followed by a sustained activation of isoforms beta1, delta, epsilon, and mu 24-48 h postinfection. A cell-permeable peptide inhibitor specific for the zeta isoform decreased early ERK kinase activation by RSV. Down-regulation of the other PKC isoforms with PMA blocked the late sustained activation of ERK by RSV. These studies suggest that RSV activates multiple PKC isoforms with subsequent downstream activation of ERK kinase.  相似文献   

10.
Glucocorticoids (GCs) are stress hormones secreted in response to perceived psychological and or physiological stress. GCs have been shown to reduce tissue inflammation by down-regulating the production of inflammatory chemokines produced by epithelial cells. The protozoan parasite Toxoplasma gondii is known to increase cytokine, chemokine, and Toll-like receptors (TLRs) expression in parasite infected mouse intestinal epithelial cells (IECs). We sought to analyze the role of an anti-inflammatory protein, glucocorticoid-induced leucine zipper (GILZ) in MODE-K cells during infection with T. gondii. GILZ expression in MODE-K cells was assessed by PCR and immunoblotting after stimulation with GCs (corticosterone, CORT) or T. gondii infection. GILZ mRNA was constitutively expressed in MODE-K cells but not its protein product. While infection and pre-exposure to CORT decreased GILZ isoforms of 28 and 17 kD, the presence of CORT during infection increased levels of 17 kD isoform. Infected cells treated with CORT had decreased expression of chemokines (IP-10/CXCL10, MCP-1/CCL2, MIP-2/CXCL8) while their expression was increased when endogenous GILZ was removed by siRNA treatment. GILZ up-regulation during infection may serve as a mechanism to decrease epithelial cell responses and facilitate parasite replication.  相似文献   

11.
The TGF-beta's are multifunctional, pleiotropic molecules with major effects in control of cellular migration, cellular proliferation, and elaboration of extracellular matrix. Thus far, five distinct isoforms of TGF-beta have been described, each approximately 65-85% homologous and containing the characteristic 9 positionally conserved cysteine residues. Although the actions of the activated mature forms of the different isoforms on cells are qualitatively similar in most cases, there are a few examples of distinct activities. For example, TGF-beta's 1 and 3, but not TGF-beta 2, inhibit the growth of large vessel endothelial cells, and TGF-beta's 2 and 3, but not TGF-beta 1, inhibit the survival of cultured embryonic chick ciliary ganglionic neurons. In addition, selective targeting of the latent forms of the TGF-beta's is suggested by the observation that latent TGF-beta 2 is the prominent isoform found in body fluids such as amniotic fluid, breast milk, and the aqueous and vitreous humor of the eye; it is noteworthy in this regard that TGF-beta 2 is unique among various isoforms in that it lacks a RGD integrin-binding sequence in its precursor. The most dramatic differences in the TGF-beta isoforms are seen at the level of expression, where there is now a wealth of data demonstrating both spatially and temporally distinct expression of both the mRNAs and proteins in developing tissues, regenerating tissues, and in pathologic responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Proteolytic activation is a unique feature of the epithelial sodium channel (ENaC). However, the underlying molecular mechanisms and the physiologically relevant proteases remain to be identified. The serine protease trypsin I can activate ENaC in vitro but is unlikely to be the physiologically relevant activating protease in ENaC-expressing tissues in vivo. Herein, we investigated whether human trypsin IV, a form of trypsin that is co-expressed in several extrapancreatic epithelial cells with ENaC, can activate human ENaC. In Xenopus laevis oocytes, we monitored proteolytic activation of ENaC currents and the appearance of γENaC cleavage products at the cell surface. We demonstrated that trypsin IV and trypsin I can stimulate ENaC heterologously expressed in oocytes. ENaC cleavage and activation by trypsin IV but not by trypsin I required a critical cleavage site (Lys-189) in the extracellular domain of the γ-subunit. In contrast, channel activation by trypsin I was prevented by mutating three putative cleavage sites (Lys-168, Lys-170, and Arg-172) in addition to mutating previously described prostasin (RKRK178), plasmin (Lys-189), and neutrophil elastase (Val-182 and Val-193) sites. Moreover, we found that trypsin IV is expressed in human renal epithelial cells and can increase ENaC-mediated sodium transport in cultured human airway epithelial cells. Thus, trypsin IV may regulate ENaC function in epithelial tissues. Our results show, for the first time, that trypsin IV can stimulate ENaC and that trypsin IV and trypsin I activate ENaC by cleavage at distinct sites. The presence of distinct cleavage sites may be important for ENaC regulation by tissue-specific proteases.  相似文献   

13.
Patients with renal and colon cancer frequently develop IgG autoantibodies toward the NY-CO-38/PDZ-73 antigen, a protein of 652 amino acids (73 kDa) which contains three copies of the PDZ protein-protein interaction domain. The gene encoding PDZ-73 mapped to chromosome 11p15.4-p15.1. Additional tissue-specific isoforms were identified: PDZ-45, which lacks the third PDZ domain and the putative PEST protein degradation motif, is expressed in kidney, colon, small intestine, brain and testis; PDZ-54 and PDZ-59, which also lack the third PDZ domains, have unique carboxyl terminal amino acids and are expressed in brain, kidney, bladder, colon cancer and renal cancer; and a putative PDZ-37 isoform, containing only the third PDZ domain, that is expressed in the central nervous system. Immunohistochemical staining with anti-PDZ 73 monoclonal antibodies showed strong cytoplasmic reactivity in epithelial cells of the small intestine, colon and kidney tubules, with a prominent apical staining pattern in cells of the small intestine. The reactivity pattern of the antibodies with various tissues correlated with the mRNA expression pattern of the PDZ-45 isoform. The existence of multiple PDZ-73 isoforms with variations in tissue distribution, PDZ domains, protein degradation sequences and carboxyl terminal structure indicate that these isoforms have distinct tissue-specific functions.  相似文献   

14.
A novel pp90rsk Ser/Thr kinase (referred to as RSK3) was cloned from a human cDNA library. The RSK3 cDNA encodes a predicted 733-amino-acid protein with a unique N-terminal region containing a putative nuclear localization signal. RSK3 mRNA was widely expressed (but was predominant in lung and skeletal muscle). By using fluorescence in situ hybridization, the human RSK3 gene was localized to band q27 of chromosome 6. Hemagglutinin epitope-tagged RSK3 was expressed in transiently transfected COS cells. Growth factors, serum, and phorbol ester stimulated autophosphorylation of recombinant RSK3 and its kinase activity toward several protein substrates known to be phosphorylated by RSKs. However, the relative substrate specificity of RSK3 differed from that reported for other isoforms. RSK3 also phosphorylated potential nuclear target proteins including c-Fos and histones. Furthermore, although RSK3 was inactivated by protein phosphatase 2A in vitro, the enzyme was not activated by ERK2/mitogen-activated protein (MAP) kinase. In contrast, the kinase activity of another epitope-tagged RSK isoform (RSK-1) was significantly increased by in vitro incubation with ERK2/MAP kinase. Finally, we used affinity-purified RSK3 antibodies to demonstrate by immunofluorescence that endogenous RSK3 undergoes serum-stimulated nuclear translocation in cultured HeLa cells. These results provide evidence that RSK3 is a third distinct isoform of pp90rsk which translocates to the cell nucleus, phosphorylates potential nuclear targets, and may have a unique upstream activator. RSK3 may therefore subserve a discrete physiologic role(s) that differs from those of the other two known mammalian RSK isoforms.  相似文献   

15.
ENaC, the sodium-selective amiloride-sensitive epithelial channel, mediates electrogenic sodium re-absorption in tight epithelia and is deeply associated with human hypertension. The ENaC expression at plasma membrane requires the regulated transport, processing, and macromolecular assembly in a defined and highly compartmentalized manner. Ras-related Rab GTPases regulate intracellular trafficking during endocytosis, regulated exocytosis, and secretion. To evaluate the role of these proteins in regulating amiloride-sensitive sodium channel activity, multiple Rab isoforms 3, 5, 6, and Rab27a were expressed in HT-29 cells. Rab3 and Rab27a inhibited ENaC currents, while the expression of other Rab isoforms failed to elicit any statistically significant effect on amiloride-sensitive currents. The immunoprecipitation experiments suggest protein-protein interaction of Rab3 and Rab27a with epithelial sodium channel. Biotinylation studies revealed that modulation of ENaC function is due to the reduced apical expression of channel proteins. Study also indicates that Rabs do not appear to affect the steady-state level of total cellular ENaC. Alternatively, introduction of isoform-specific small inhibitory RNA (SiRNA) reversed the Rab-dependent inhibition of amiloride-sensitive currents. These observations point to the involvement of multiple Rab proteins in ENaC transport through intracellular routes like exocytosis, recycling from ER to plasma membrane or degradation and thus serve as potential target for human hypertension.  相似文献   

16.
Phospholipase D (PLD) is expressed in many tissues and stimulated by growth factors and cytokines. However, the role of PLD in signal transduction is still not well-understood. Human embryonic kidney (HEK-293) cells exhibit low levels of both PLD1 and PLD2 mRNA, however, only PLD1 protein was detected by Western blot. When either isoform of PLD was stably expressed in HEK-293 cells, we observed an increased PLD activity in a cell-free system and a 12-O-tetradecanoyl-13-phorbol acetate (TPA)-stimulated increase in PLD activity in intact cells. This system was then used to elucidate the effects of PLD activity on TPA-stimulated signaling pathways. Two such pathways, the mitogen-activated protein kinases (MAPK), extracellular regulated protein kinase (ERK) and p38 are activated by growth factors and cellular stress, respectively. We found that TPA stimulated ERK phosphorylation regardless of the expression status of PLD. In contrast to ERK kinase, HEK-293 cells were unable to induce p38 phosphorylation by TPA stimulation. When HEK-293 cells expressed either PLD1 or PLD2, we observed elevated p38 phosphorylation in response to TPA stimulation. The ERK and p38 MAPKs can also stimulate the expression of both cyclooxygenase-2 (Cox-2) and interleukin-8 (IL-8). We used this system to differentiate the effect of PLD1 or PLD2 activity on the expression of Cox-2 and IL-8. Increased Cox-2 and IL-8 expression was found only in HEK-293 cells expressing PLD1. These data identify a novel role for the PLD1 isoform in the induction of gene expression and provide new insight into the differential role of PLD1 and PLD2 in cells.  相似文献   

17.
The amiloride-sensitive epithelial sodium channel (ENaC), a multimeric plasma membrane protein composed of alpha-, beta-, and gamma-ENaC subunits, mediates Na(+) reabsorption in epithelial tissues, including the distal nephron, colon, lung, and secretory glands, and plays a critical role in pathophysiology of essential hypertension and cystic fibrosis (CF). The function of ENaC is tightly regulated by signals elicited by aldosterone, vasopressin, agents that increase intracellular cAMP levels, ions, ion channels, G-protein-coupled mechanisms, and cytoskeletal proteins. In this paper, the effects of Ca(2+) on the expression of the human ENaC subunits expressed in human embryonic kidney cells (HEK-293 cells) were examined. Incubation of cells with increased extracellular Ca(2+) and treatment of cells with A23187 and thapsigargin stimulated the expression of the monomeric ENaC subunits. Treatment of cells with Ca(2+)-chelating agents, EGTA and BAPTA-AM, reduced the levels of ENaC subunit expression. The pulse-chase experiments suggested that a rise in the intracellular Ca(2+) increases the ENaC subunit expression. Immunoblot analysis using the anti-ubiquitin antibody indicated that ENaC undergoes ubiquitination. A correlation between the processes that regulate ENaC function with the intracellular Ca(2+) was discussed.  相似文献   

18.

Background

Glucocorticoids (GCs) are a first-line treatment for asthma for their anti-inflammatory effects, but they also hinder the repair of airway epithelial injury. The anti-inflammatory protein GC-induced leucine zipper (GILZ) is reported to inhibit the activation of the mitogen-activated protein kinase (MAPK)-extracellular-signal-regulated kinase (ERK) signaling pathway, which promotes the repair of airway epithelial cells around the damaged areas. We investigated whether the inhibition of airway epithelial repair imposed by the GC dexamethasone (DEX) is mediated by GILZ.

Methods

We tested the effect of DEX on the expressions of GILZ mRNA and GILZ protein and the MAPK-ERK signaling pathway in human airway epithelial cells, via RT-PCR and Western blot. We further evaluated the role of GILZ in mediating the effect of DEX on the MAPK-ERK signaling pathway and in airway epithelium repair by utilizing small-interfering RNAs, MTT, CFSE labeling, wound-healing and cell migration assays.

Results

DEX increased GILZ mRNA and GILZ protein levels in a human airway epithelial cell line. Furthermore, DEX inhibited the phosphorylation of Raf-1, Mek1/2, Erk1/2 (components of the MAPK-ERK signaling pathway), proliferation and migration. However, the inhibitory effect of DEX was mitigated in cells when the GILZ gene was silenced.

Conclusions

The inhibition of epithelial injury repair by DEX is mediated in part by activation of GILZ, which suppressed activation of the MAPK-ERK signaling pathway, proliferation and migration. Our study implicates the involvement of DEX in this process, and furthers our understanding of the dual role of GCs.  相似文献   

19.
Jun ES  Kim YS  Yoo  Roh HJ  Jung JS 《Life sciences》2001,68(7):827-840
Integrity of the airway epithelium is important for pulmonary defense mechanisms to infection. The lining of the airway contains a diverse population of cell types. Understanding about progenitor-progeny relationships during renewal of airway epithelium is important for elucidating mechanisms of injury repair or oncogenesis. Primary culture of airway epithelia is a good model for studying differentiation process of epithelial cells. Ion channels and aquaporins(AQPs) play a critical role on ion and fluid transport across airway epithelia. However, changes in their expression during differentiation of airway epithelial cells have not been reported yet. This study was undertaken to identify isoforms of aquaporins in cultured normal human nasal epithelial cells (NHNE) and effects of various culture conditions on expression of differentiation markers and channels. 1. Degenerative RT-PCR revealed that AQP3 and AQP4 are expressed in cultured NHNE cells. 2. Culture of NHNE cells on permeable filters induced expression of mucin, aquaporins and CFTR. 3. Retinoic acid induced morphological changes in NHNE cells and inhibited their proliferation. The treatment of retinoic acid induced expression of mucin and CFTR, whereas it inhibited expression of cornifin. The effect of retinoic acid was enhanced by culture of cells on permeable filters. 4. Dexamethasone induced ENaC expression in NHNE cells grown on permeable supports only, but did not affect expression of mucin, aquaporins and CFTR. These results indicate that cultured NHNE cells express aquaporins (AQP3 and 4), CFTR and ENaC, and culture of NHNE cells on permeable filters induces differentiation in to mucosecretory and surface epithelial cells, and that effects of retinoic acid and dexamethasone on gene expression are affected by culture conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号