首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Retinal melatonin biosynthesis is regulated in part by the activity of serotonin N-acetyltransferase (NAT), which increases in dark-adapted, but not light-exposed, retinas at night. Using an in vitro eye cup preparation from the African clawed frog (Xenopus laevis), we have obtained evidence indicating that dopamine and gamma-aminobutyric acid (GABA) interact in the regulation of the nocturnal rise in NAT activity. Increases of NAT activity induced by the GABA agonist muscimol were suppressed by dopamine. Spiperone, a D2 dopamine receptor antagonist, and muscimol separately increased NAT activity, but were not additive in their effects. Inhibition of NAT activity by the GABA antagonist picrotoxin was blocked by spiperone. Additionally, muscimol decreased concentrations of dopamine and its principle metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), in light exposed retinas, while picrotoxin increased retinal DOPAC levels in darkness. These data suggest that in darkness, activation of GABA receptors inhibits dopamine secretion, consequently releasing NAT-synthesizing cells from a tonic inhibitory influence.  相似文献   

2.
Retinas of rats, rabbits, chicks and carp possess enzymes, i.e. serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT), which convert serotonin (5-HT) to melatonin, NAT activity and melatonin levels, but not HIOMT activity, show distinct circadian rhythms, with peak values occurring during the dark (night) phase of the 12 h light-dark cycle. Exposure of the animals to light at night inhibited the night-stimulated NAT activity. Treatment of rats and rabbits with the dopaminergic agonist, apomorphine, inhibited the retinal NAT activity. Dopamine levels in the rabbit retina showed diurnal variations, with higher contents seen during the light phase of both the 12 h light-dark cycle with lights on between 06:00–18:00, and that with reversed periods of illumination (lights on between 18:00–06:00). Melatonin potently inhibited the electrically-evoked calcium-dependent release of [3H]dopamine from pieces of retina from both albino and pigmented rabbits. Our results indicate that the light-regulated melatonin-generating system does operate in the vertebrate retina. The present data, together with other findings, suggest that in the retina there is an antagonistic interplay between melatonin and dopamine. Thus, melatonin inhibits dopamine synthesis in, and release from, the retinal dopaminergic cells, whilst dopamine inhibits the night (dark)-stimulated melatonin formation by decreasing NAT activity. Since light increases metabolic activity of the retinal dopaminergic cells (it enhances the amine synthesis, levels and release), it seems likely that the retinal dopamine plays a role of a “light” messenger in the inhibition of melatonin synthesis. It is suggested that an interplay between melatonin and dopamine in the retina is responsible for regulation of those retinal events which follow circadian rhythmicity, and/or are dependent on light-dark conditions.  相似文献   

3.
Abstract: Melatonin deacetylase, an enzyme activity recently discovered in the Xenopus laevis retina, regulates local melatonin levels. The deacetylase occurs in retina, retinal pigment epithelium, and skin, all sites of melatonin action, and is widely distributed among vertebrates. We have solubilized the enzyme from Xenopus retina and pigment epithelium using nonionic detergents, and have developed a specific enzyme assay. We have characterized the enzyme and now report that the deacetylase is relatively specific for melatonin and is inhibited by the melatonin precursor N -acetylserotonin and the product of the deacetylase, 5-methoxytryptamine. Inhibition of deacetylase activity by eserine (physostigmine) suggests a relationship between deacetylase and cholinesterase activities. However, among a variety of cholinesterase inhibitors tested, only eserine inhibits the deacetylase. Furthermore, eserine is much less potent as an inhibitor of the deacetylase than the cholinesterases, and purified cholinesterases failed to deacetylate melatonin. We also show that melatonin deacetylase and aryl acylamidase (an enzyme related to cholinesterases) activities are differentially extractable from Xenopus ocular tissues, and that they exhibit different pH optima and inhibition profiles. Our results provide an initial characterization of the Xenopus retinal melatonin deacetylase, and indicate that deacetylase activity is distinct from cholinesterase and aryl acylamidase activities.  相似文献   

4.
The possible involvement of cyclic AMP in the regulation of retinal serotonin N-acetyltransferase (NAT) activity was investigated using eye cups of Xenopus laevis cultured in a defined medium. Addition of dibutyrylcyclic AMP (dbcAMP) increased retinal NAT activity in eye cups cultured in light. Addition of adenosine or 5'-AMP under identical conditions was without effect. 3-Isobutylmethylxanthine (IBMX) increased both retinal cyclic AMP levels and NAT activity in light-exposed eye cups. Forskolin also increased the concentration of cyclic AMP and the activity of NAT, and the effect of forskolin on both of these parameters was synergistically enhanced by IBMX. The effects of forskolin and of dbcAMP did not require the addition of calcium to the medium; thus, Ca2+ -dependent synaptic transmission does not appear to be required for the response to these drugs. Incubation conditions that activate cyclic AMP-dependent protein kinase in retinal homogenates had no effect on NAT activity, suggesting that direct phosphorylation of NAT was probably not involved in the response to elevating cyclic AMP in situ. The effect of dbcAMP was blocked by protein synthesis inhibitors. These results suggest that cyclic AMP increases retinal NAT activity by a mechanism that involves protein synthesis, and support a role for cyclic AMP in the nocturnal increase of NAT activity in darkness.  相似文献   

5.
In chicken retinas, melatonin levels and the activity of serotonin N-acetyltransferase (NAT), a key regulatory enzyme of melatonin biosynthesis, are expressed as circadian rhythms with peaks of levels and activity occurring at night. In the present study, NAT activity was examined in retinas of embryonic and posthatch chicks to assess the ontogenic development of regulation of the enzyme by light, circadian oscillators, and the second messenger cyclic AMP. During embryonic development, NAT activity was consistently detectable by embryonic day 6 (E6). Significant light-dark differences were first observed on E20, and increased to a maximum amplitude of sixfold by posthatch day 3 (PH3). Circadian rhythmicity of NAT activity appears to develop at or prior to hatching, as evidenced by day-night differences of activity in constant darkness observed in PH1 chicks that had been exposed to a light-dark cycle in ovo only. NAT activity is regulated by a cyclic AMP-dependent mechanism. Activity was significantly increased by incubating retinas with forskolin or dibutyryl cyclic AMP as early as E7, and seven- to ninefold increases were observed following treatment with these agents on E14. Thus, development of the cyclic AMP-dependent mechanism for increasing NAT activity significantly precedes that of rhythmicity, suggesting that the onset of rhythmicity may be related to the onset of photoreception or development of the circadian oscillator in chick retina.  相似文献   

6.
The characterization of 2-[125I]-iodomelatonin binding sites was performed in the golden hamster retina using in vitro quantitative autoradiography. The specific binding of the radioligand fulfills all the criteria for binding to a receptor site, being stable, reversible, saturable and of high affinity. 2-[125I]-iodomelatonin labels a single class of sites in the sections of whole eyes as well as in isolated retinas with a similar affinity, whereas the total number of receptors was higher in sections of whole eyes than in isolated retinas. Melatonin and related analogues competed for 2-[125I]-iodomelatonin binding with the following order of affinities: 2-iodomelatonin > 6-hydroxymelatonin > melatonin > 6-chloromelatonin >>> N-acetyl-5-hydroxytryptamine (NAS) > 5-methoxytryptamine > 5-hydroxytryptamine (serotonin). Micro-molar concentrations of GTP and GDP dose-dependently and specifically inhibited agonist binding, suggesting coupling of the binding sites to a Gi protein. These results suggest the participation of melatonin in the regulation of retinal physiology trough activation of melatonin receptor subtypes.  相似文献   

7.
Abstract: Melatonin and 5-methoxytryptamine inhibited forskolin-stimulated cyclic AMP formation in cultured neural cells prepared from embryonic chick retina. Both methoxyindoles exhibited similar potency and efficacy, with EC50 values of 0.8 n M for melatonin and 7.2 n M for 5-methoxytryptamine. Inhibition of cyclic AMP formation by 5-methoxytryptamine or melatonin was prevented by pretreatment with pertussis toxin. Pretreatment of cultures with 5-methoxytryptamine for 24 h reduced the subsequent inhibitory cyclic AMP response to 5-methoxytryptamine but not that to 2-iodomelatonin. Putative melatonin receptors on cultured retinal cells were labeled with 2-[125I]iodomelatonin. Melatonin displaced specific 2-[125I]iodomelatonin with a K i value (0.8 n M ) similar to the EC50 for inhibition of cyclic AMP formation. In contrast, 5-methoxytryptamine only inhibited 2-[125I]iodomelatonin binding at very high concentrations ( K i = 650 n M ). Pretreating cultured cells for 24 h with 2-iodomelatonin or melatonin, but not with 5-methoxytryptamine, reduced subsequent 2-[125I]iodomelatonin binding. Thus, 5-methoxytryptamine appears to inhibit forskolin-stimulated cyclic AMP formation at a site distinct from the 2-iodomelatonin binding site.  相似文献   

8.
The characteristics of the binding sites labeled by the radioligand 2-[125I]iodomelatonin were compared in chicken neuronal retina and retinal pigment epithelium (RPE). Specific binding of 2-[125I]iodomelatonin in both sites was stable, saturable, reversible, and of high affinity. Scatchard analysis revealed an affinity constant (KD) of 446 +/- 55 pM and a total number of binding sites (Bmax) of 25.4 +/- 2.2 fmol/mg of protein for neuronal retina. For RPE the KD was 34.1 +/- 2.2 pM and the Bmax 59.5 +/- 5.2 fmol/mg of protein. Competition experiments with various melatonin analogues gave the following order of affinities: 2-iodomelatonin greater than 2-chloromelatonin greater than melatonin greater than 6-chloromelatonin greater than 6-hydroxymelatonin greater than N-acetylserotonin greater than 6-methoxyharmalan greater than 5-hydroxytryptamine. Linear regression of log Ki values from neuronal retina and RPE gave a highly significant correlation (r = 0.994, n = 8; p less than 0.001). GTP inhibited specific binding to RPE membranes in a concentration-dependent manner, but not in neuronal retinal membranes. The present results strongly suggest that a single type of melatonin receptor is found in neuronal retina and RPE, and that the site in RPE is coupled to a guanine nucleotide-binding regulatory protein (G protein), but that in neuronal retina is not.  相似文献   

9.
The possible involvement of calcium in the regulation of retinal serotonin N-acetyltransferase (NAT) activity was investigated using eye cups of Xenopus laevis cultured in defined medium. Omitting CaCl2 from the culture medium completely inhibited the dark-dependent increase of NAT activity at night. Approximately 10(-4)-10(-3) M free Ca2+ was found to be required for the maximal increase of NAT activity in the dark. Other divalent cations--Ba2+, Sr2+, and Mn2+--did not substitute for Ca2+. Antagonists of voltage-sensitive calcium channels, including nifedipine, methoxyverapamil (D600), Co2+, and Mg2+, were found to be effective inhibitors of the dark-dependent increase of retinal NAT activity. Trifluoperazine also decreased retinal NAT activity. These studies indicate that the increase of retinal NAT activity in the dark is mediated by a specific Ca2+-dependent process and that Ca2+ influx through voltage-sensitive calcium channels is involved.  相似文献   

10.
Pharmacology and function of melatonin receptors   总被引:13,自引:0,他引:13  
M L Dubocovich 《FASEB journal》1988,2(12):2765-2773
The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. In summary, the recent advances in the pharmacological characterization of melatonin receptors in the central nervous system will further stimulate the search for potent and selective melatonin receptor agonists and antagonists, and should aid in our understanding of the mechanism of action of melatonin in mammalian brain.  相似文献   

11.
The retinal dopaminergic system appears to play a major role in the regulation of global retinal processes related to light adaptation. Although most reports agree that dopamine release is stimulated by light, some retinal functions that are mediated by dopamine exhibit circadian patterns of activity, suggesting that dopamine release may be controlled by a circadian oscillator as well as by light. Using the accumulation of the dopamine metabolite dihydroxyphenylacetic acid (DOPAC) in the vitreous as a measure of dopamine release rates, we have investigated the balance between circadian- and light control over dopamine release. In chickens held under diurnal light:dark conditions, vitreal levels of DOPAC showed daily oscillations with the steady-state levels increasing nine-fold during the light phase. Kinetic analysis of this data indicates that apparent dopamine release rates increased almost four-fold at the onset of light and then remained continuously elevated throughout the 12h light phase. In constant darkness, vitreal levels of DOPAC displayed circadian oscillations, with an almost two-fold increase in dopamine release rates coinciding with subjective dawn/early morning. This circadian rise in vitreal DOPAC could be blocked by intravitreal administration of melatonin (10 nmol), as predicted by the model of the dark-light switch where a circadian fall in melatonin would relieve dopamine release of inhibition and thus be responsible for the slight circadian increase in dopamine release. The increase in vitreal DOPAC in response to light, however, was only partially suppressed by melatonin. The activity of the dopaminergic amacrine cell in the chicken retina thus appears to be dominated by light-activated input.  相似文献   

12.
Previous histological, electrophysiological, and biochemical reports have addressed the hypothesis that serotonin functions as a neurotransmitter in mammalian retinas. We have tested the effect on the levels of cyclic AMP of the application of exogenous serotonin, 5-methoxytryptamine, melatonin, and 5-methoxydimethyl-tryptamine to isolated, incubated rabbit retinas. All indoleamines tested significantly elevated intracellular levels of cyclic AMP in both light- and dark-adapted, incubated, intact retinas, provided a phosphodiesterase inhibitor was present. In homogenates of rabbit retina, all indoleamines tested also markedly increased adenylate cyclase activity over basal levels. Maximal activity was observed with 50 microM indoleamine; addition of GTP augmented this increase. The increase in enzyme activity persisted in the presence of known antagonists of dopamine and serotonin 5-HT2-receptors, but was blocked by the mixed 5-HT1, 5-HT2-antagonist lysergic acid diethylamide. The retinal locations of this response have also been identified using layer microdissection techniques on freeze-dried samples obtained from rabbit eyecups suprafused with indoleamine plus phosphodiesterase inhibitor. Cyclic AMP levels were measured in discrete retinal layers of both light- and dark-adapted suprafused eyecups, and increased levels were observed primarily in the inner and outer plexiform layers, which contain the synapses of the retinal neurons.  相似文献   

13.
Melatonin Binding Sites   总被引:12,自引:2,他引:10  
The distribution and characterization of specific melatonin binding sites were studied using 125I-melatonin. Autoradiography revealed only three sites of specific melatonin binding in brain: the suprachiasmatic nuclei, the median eminence, and the small part of choroid plexus at the caudal end of the fourth ventricle. Two other sites were detected outside the CNS: the anterior pituitary and the retina. The specific binding of 125I-melatonin was saturable and reversible. The dissociation constant (KD) of the binding sites was 60 pM. The concentration of the binding sites (Bmax) in the median eminence was 26 fmol/mg protein, and in the pituitary 3 fmol/mg protein. Specificity of the binding sites was tested by displacement of 125I-melatonin. The order of potency--melatonin much less than N-acetyl-5-hydroxytryptamine less than 5-methoxytryptamine much less than 5-hydroxytryptamine = 3,4-dihydroxyphenylethylamine = noradrenaline--shows high specificity of the binding sites for melatonin.  相似文献   

14.
Effects of Light on Dopamine Metabolism in the Chick Retina   总被引:5,自引:4,他引:1  
The effect of prolonged exposure to light on the activity of dopaminergic neurons and dopamine (DA) metabolism of chick retinae was investigated. alpha-Fluoromethyldopa, a potent and specific irreversible inactivator of aromatic amino acid decarboxylase, was used to assess DA turnover after inhibition of synthesis, and also to assess in vivo tyrosine hydroxylase activity by dihydroxyphenylalanine accumulation. After 48 h of light exposure, retinal DNA in 12-day-old chicks was about 30% higher (p less than 0.005) whereas dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were elevated two to three times (p less than 0.005) the level of controls kept in the dark for the same period. DA turnover was about twofold faster in the light (t 1/2 = 31 min) than in the dark (t 1/2 = 65 min). Tyrosine hydroxylase, assayed in vitro with saturating levels of cofactor and substrate, increased by about 50% after light exposure. The apparent tyrosine hydroxylase activity in vivo was approximately sixfold higher in the light than the dark. These results are interpreted and discussed in terms of the regulation of DA synthesis, and the use of DOPAC and HVA as indices of DA function in the retina.  相似文献   

15.
Abstract: Melatonin receptors were characterized in cultured neurons and photoreceptors prepared from chick embryo retina. Cultured cells contained high-affinity 2-[125I]iodomelatonin binding sites (KD = 41.6 pM), similar to those in intact retina. The effects of melatonin and related indoles on cyclic AMP accumulation were examined. Melatonin (10?7M) had no effect on basal or K+-stimulated cyclic AMP accumulation, but inhibited forskolin-stimulated cyclic AMP accumulation by approximately 50%. Melatonin inhibited forskolin-stimulated cyclic AMP accumulation in the presence or absence of the cyclic nucleotide phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, suggesting an effect on cyclic AMP synthesis rather than degradation. Half-maximal inhibition was observed at 5.9 × 10?10M melatonin. The relative order of potency among melatonin analogues was 2-iodomelatonin > melatonin ≈ 6-chloromelatonin ≥ 6-hydroxymelatonin > N-acetylserotonin ≈ 5-methoxytryptophol > serotonin. The EC50 value for inhibition of cyclic AMP accumulation by 2-iodomelatonin (36.7 pM) was comparable to the KD value for binding of the radioligand, suggesting that the binding sites represent functional receptors. The inhibitory effect of melatonin was antagonized by the putative melatonin antagonists luzindole, N-acetyltryptamine, and N-(2,4-dinitrophenyl)-5-methoxytryptamine, with estimated KB values of 0.12, 0.17, and 1 µM, respectively. At a concentration of 10 µM, N-(2,4-dinitrophenyl)-5-methoxytryptamine significantly inhibited forskolin-stimulated cyclic AMP accumulation when added alone; at 30 µM, luzindole and N-acetyltryptamine also had significant inhibitory effects. The inhibitory effect of melatonin was blocked by pretreatment with pertussis toxin. The results of this study indicate that melatonin receptors on retinal cells are coupled via inhibitory G proteins to cyclic AMP accumulation. Thus, some of the effects of melatonin on retinal physiology may be related to regulation of cyclic nucleotide metabolism.  相似文献   

16.
The aim of the present study was to examine arylalkylamine N‐acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light‐dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night‐time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high‐amplitude melatonin rhythms in the turkey.  相似文献   

17.
P M Iuvone 《Life sciences》1986,38(4):331-342
The regulation of serotonin N-acetyltransferase (NAT) activity and cyclic AMP accumulation in the retina of the African clawed frog (Xenopus laevis) was studied using an in vitro eye cup preparation. Retinal NAT, a key enzyme in the synthesis of melatonin, is expressed as a circadian rhythm with peak activity at night. The increase of NAT activity at night appears to be mediated by cyclic AMP and is suppressed by light. Dopamine inhibits the nocturnal increase of retinal NAT activity; approximately 80% inhibition was observed with 1 microM dopamine. Dopamine at 1 microM did not stimulate retinal cyclic AMP accumulation. The effect of dopamine on NAT activity was antagonized by the D2-selective receptor antagonists spiperone and metoclopramide, but not by the putative D1 selective antagonist SCH 23390. The nocturnal rise in NAT activity was inhibited by LY 171555, a putative D2 selective agonist, but not by SKF 38393, a putative D1 selective agonist. LY 171555 also decreased cyclic AMP accumulation in eye cups incubated under similar conditions. Dopamine inhibited the stimulation of NAT activity in light by 3-isobutylmethylxanthine, but not that by dibutyryl cyclic AMP, suggesting that dopamine acts by decreasing cyclic AMP formation in the NAT-containing cells. Thus, the effects of dopamine on NAT activity may be mediated by a receptor with the pharmacological and biochemical characteristics of a D2 receptor.  相似文献   

18.
Retinal melatonin biosynthesis is regulated in part by changes in the activity of serotonin N-acetyltransferase (NAT), which increases at night in dark-adapted retinas, but not in light-exposed retinas. Using an in vitro preparation of Xenopus laevis (African clawed frog) eye cups, we have obtained evidence supporting the involvement of gamma-aminobutyric acid (GABA) in the regulation of NAT activity. GABA, the GABA-A receptor agonists muscimol and isoguvacine, and the GABA-B receptor agonist (−)baclofen, in the presence of 3-isobutyl-1-methylxanthine, mimicked dark adaptation by increasing the activity of NAT in light-exposed retinas. The response to GABA agonists was not additive to that observed in darkness. Diazepam increased NAT activity of light-exposed retinas when added in the presence of muscimol, but had no significant effect when added alone. Picrotoxin, an antagonist of the GABA-A receptor-linked Cl channel, blocked both the stimulation caused by dark adaptation and that caused by GABA-A agonists. The increase of NAT activity elicited by muscimol, but not that by baclofen, was blocked by bicuculline methobromide and picrotoxin. The results implicate GABA, acting through GABA-A and possibly GABA-B receptors, in the regulation of NAT activity in retina.  相似文献   

19.
Melatonin has been traditionally considered to be derived principally from the pineal gland. However, several investigations have now demonstrated that melatonin synthesis occurs also in the retina (and in other organs as well) of several vertebrate classes, including mammals. As in the pineal, melatonin synthesis in the retina is elevated at night and reduced during the day. Since melatonin receptors are present in the retina and retinal melatonin does not contribute to the circulating levels, retinal melatonin probably acts locally as a neuromodulator. Melatonin synthesis in the retinas of mammals is under control of a circadian oscillator located within the retina itself, and circadian rhythms in melatonin synthesis and/or release have been described for several species of rodents. These rhythms are present in vivo, persist in vitro, are entrained by light, and are temperature compensated. The recent cloning of the gene responsible for the synthesis of the enzyme arylalkylamine N-acetyltransferase (the only enzyme unique to the melatonin synthetic pathway) will facilitate localizing the cellular site of melatonin synthesis in the retina and investigating the molecular mechanism responsible for the generation of retinal melatonin rhythmicity. Melatonin has been implicated in many retinal functions, and the levels of melatonin and dopamine appear to regulate several aspects of retinal physiology that relate to light and dark adaptation. In conclusion, it seems that retinal melatonin is involved in several functions, but its precise role is yet to be understood. (Chronobiology International, 17(5), 599–612, 2000)  相似文献   

20.
Abstract: The diurnal variations and photic regulation of cyclic AMP and melatonin content in golden hamster retina were studied. Both parameters showed significant diurnal variations with maximal values at night. Light exposure during the night inhibited retinal cyclic AMP and melatonin levels, whereas exposure to darkness during the day significantly increased cyclic AMP and melatonin content. Incubation with melatonin of retinas excised at different intervals indicated that the methoxyindole inhibited cyclic AMP accumulation in a time-dependent manner. The inhibitory effect of melatonin at 2400 h and at noon showed a threshold concentration of 1 and 10 pM, respectively. At 0400 h melatonin did not affect cyclic AMP accumulation. The results indicate a diurnal variability of retinal cyclic AMP and melatonin content in hamsters, mainly influenced by a photic stimulus. Cyclic AMP could be a putative second messenger for melatonin action in golden hamster retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号