首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH) catalyzes a key reaction in the acetone- and butanol (solvent)-producing clostridia. It reduces acetyl-CoA and butyryl-CoA to the corresponding aldehydes, which are then reduced by alcohol dehydrogenase (ADH) to form ethanol and 1-butanol. The ALDH of Clostridium beijerinckii NRRL B593 was purified. It had no ADH activity, was NAD(H) specific, and was more active with butyraldehyde than with acetaldehyde. The N-terminal amino acid sequence of the purified ALDH was determined. The open reading frame preceding the ctfA gene (encoding a subunit of the solvent-forming CoA transferase) of C. beijerinckii NRRL B593 was identified as the structural gene (ald) for the ALDH. The ald gene encodes a polypeptide of 468 amino acid residues with a calculated M(r) of 51, 353. The position of the ald gene in C. beijerinckii NRRL B593 corresponded to that of the aad/adhE gene (encoding an aldehyde-alcohol dehydrogenase) of Clostridium acetobutylicum ATCC 824 and DSM 792. In Southern analyses, a probe derived from the C. acetobutylicum aad/adhE gene did not hybridize to restriction fragments of the genomic DNAs of C. beijerinckii and two other species of solvent-producing clostridia. In contrast, a probe derived from the C. beijerinckii ald gene hybridized to restriction fragments of the genomic DNA of three solvent-producing species but not to those of C. acetobutylicum, indicating a key difference among the solvent-producing clostridia. The amino acid sequence of the ALDH of C. beijerinckii NRRL B593 was most similar (41% identity) to those of the eutE gene products (CoA-acylating ALDHs) of Salmonella typhimurium and Escherichia coli, whereas it was about 26% identical to the ALDH domain of the aldehyde-alcohol dehydrogenases of C. acetobutylicum, E. coli, Lactococcus lactis, and amitochondriate protozoa. The predicted secondary structure of the C. beijerinckii ALDH suggests the presence of an atypical Rossmann fold for NAD(+) binding. A comparison of the proposed catalytic pockets of the CoA-dependent and CoA-independent ALDHs identified 6 amino acids that may contribute to interaction with CoA.  相似文献   

2.
AIMS: The aim of the study is to investigate the effect of multiple mutations in redox or energy producing pathways of Escherichia coli on metabolic product distribution in anaerobic-rich media cultures. METHODS AND RESULTS: Various combinations of NADH dehydrogenase (NDH)-deficient, alcohol dehydrogenase (ADH), and phosphotransacetylase and acetate kinase (PTA-ACK) mutants were constructed. Anaerobic LB-glucose cultures of the strains were grown and extracellular metabolites were analysed and compared with those of the parental strain, E. coli MG1655. The profile of metabolites was examined in log phase and 24-h cultures. CONCLUSIONS: Inactivation of ndh and/or nuo gene leads to higher production of d-lactate, ethanol, formate and succinate in log phase. Inactivation of pta-ackA in NDH-I- or NDH-II-deficient strains lead to increased D-lactate formation and decreased ethanol formation. Removal of ethanol production by adhE gene inactivation generated higher production of succinate and D-lactate. D-lactate was the primary product in the ndh nuo adhE strain. SIGNIFICANCE AND IMPACT OF THE STUDY: The results show the effects of altering NADH utilization pathways on distribution of metabolic products. Such information improves our understanding of metabolic shifts and may find application in metabolic engineering of E. coli.  相似文献   

3.
克隆了嗜热乙醇杆菌(Thermoanaerobacter ethanolicus)中乙醇代谢的关键酶之一醛/醇脱氢酶(alcohol/acetaldehydedehy drogenase,AdhE)基因的上游假定启动子序列,并进行了结构分析。结果表明,adhE的上游序列是启动子,能启动报告基因在大肠杆菌中持续表达。首次发现adhE的启动子序列中存在两个独立的启动子(P172和P37)和核糖体结合位点(SD172和SD37),分别都具有完整功能,但其活性均低于完整的启动子序列。由此推测嗜热乙醇杆菌中adhE的表达受这两个启动子协同调控。  相似文献   

4.
5.
Role of NAD in regulating the adhE gene of Escherichia coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
The fermentative alcohol dehydrogenase of Escherichia coli is encoded by the adhE gene, which is induced under anaerobic conditions but repressed in air. Previous work suggested that induction of adhE might depend on NADH levels. We therefore directly measured the NAD+ and NADH levels for cultures growing aerobically and anaerobically on a series of carbon sources whose metabolism generates different relative amounts of NADH. Expression of adhE was monitored both by assay of alcohol dehydrogenase activity and by expression of phi(adhE'-lacZ) gene fusions. The expression of the adhE gene correlated with the ratio of NADH to NAD+. The role of NADH in eliciting adhE induction was supported by a variety of treatments known to change the ratio of NADH to NAD+ or alter the total NAD+-plus-NADH pool. Blocking the electron transport chain, either by mutation or by chemical inhibitors, resulted in the artificial induction of the adhE gene under aerobic conditions. Conversely, limiting NAD synthesis, by introducing mutational blocks into the biosynthetic pathway for nicotinic acid, decreased the expression of adhE under anaerobic conditions. This, in turn, was reversed by supplementation with exogenous NAD or nicotinic acid. In merodiploid strains carrying deletion or insertion mutations abolishing the synthesis of AdhE protein, an adhE-lacZ fusion was expressed at nearly 10-fold the level observed in an adhE+ background. Introduction of mutant adhE alleles producing high levels of inactive AdhE protein gave results equivalent to those seen in absence of the AdhE protein. This finding implies that it is the buildup of NADH due to lack of enzyme activity, rather than the absence of the AdhE protein per se, which causes increased induction of the phi(adhE'-lacZ) fusion. Moreover, mutations giving elevated levels of active AdhE protein decreased the induction of the phi(adhE'-lacZ) fusion. This finding suggests that the enzymatic activity of the AdhE protein modulates the level of NADH under anaerobic conditions, thus indirectly regulating its own expression.  相似文献   

6.
Peng H  Wu G  Shao W 《Anaerobe》2008,14(2):125-127
A bifunctional aldehyde/alcohol dehydrogenase gene (adhE) from Thermoanaerobacter ethanolicus JW200 was identified and cloned. To unambiguously characterize the activity of AdhE, the recombinant protein was purified. The purified AdhE exhibited high enzymatic activity attributed to aldehyde dehydrogenase (11.0+/-0.3U/mg) and low alcohol dehydrogenase activity (2.6+/-0.2U/mg). Analysis of adhE homologous expression in T. ethanolicus showed that AdhE affected ethanol production.  相似文献   

7.
8.
Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (AdhB), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield.  相似文献   

9.
The nucleotide sequence of a 2081-bp fragment of Clostridium acetobutylicum DNA containing the adh1 gene was determined. The butanol dehydrogenase gene is referred to as the adh1 gene since it was shown to have activity using butanol and ethanol as substrates. The adh1 gene consisted of 1164 bp and encoded an alcohol dehydrogenase (ADH) enzyme of 388 aa residues with an Mr of 43,274. The adh1 gene was separated from an upstream open reading frame by an intergenic region of 354 bp. No promoter consensus sequences were identified in the intergenic upstream region and the adh1 gene did not appear to be expressed off its own promoter in Escherichia coli. Three separate types of ADH have been recognized. The ADH1 from C. acetobutylicum exhibited 39% homology with the Fe-containing ADH2 from Zymomonas mobilis and 37% homology with the ADH4 from Saccharomyces cerevisiae, but showed little or no homology with the other characterised types of ADH.  相似文献   

10.
11.
为了从酿酒酵母Saccharomyces cerevisiae中克隆出乙醇脱氢酶2(Alcoholdehy drogenase2,ADH2)基因并使之在大肠杆菌中高效表达。以酿酒酵母细胞中提取的总RNA为模板,通过反转录获得酿酒酵母乙醇脱氢酶2基因,连接到表达载体pTAT上,得到重组表达质粒pTAT-ADH2,将此重组质粒转化到大肠杆菌BL21中,重组工程菌株经IPTG诱导表达得到ADH2蛋白。将该蛋白纯化后,在体外进行活性检测和小鼠体内进行毒理试验,检测ADH2的酶活性。测序结果表明克隆的基因与GenBank中所报道的adh2基因序列有90%的同源性,经SDS-PAGE电泳分析,目的蛋白得到了有效表达,蛋白条带扫描分析表明,表达量占总蛋白的50%左右,纯化得到的蛋白在小鼠体内进行毒理试验,显示出一定的活性。酿酒酵母adh2基因的克隆正确,不仅在大肠杆菌中进行了高效表达而且表现出了较好的酶活性。  相似文献   

12.
Escherichia coli RNase G, encoded by the rng gene, is involved in the processing of 16S rRNA and degradation of the adhE mRNA encoding a fermentative alcohol dehydrogenase. In a search for the intracellular target RNAs of RNase G other than the 16S rRNA precursor and adhE mRNA, total cellular proteins from rng+ and rng::cat cells were compared by two-dimensional gel electrophoresis. The amount of enolase encoded by the eno gene reproducibly increased two- to three-fold in the rng::cat mutant strain compared with the rng+ parent strain. Rifampicin chase experiments showed that the half-life of the eno mRNA was some 3 times longer in the rng::cat mutant than in the wild type. These results indicate that the eno mRNA was a substrate of RNase G in vivo, in addition to 16S rRNA precursor and adhE mRNA.  相似文献   

13.
To clarify the deactivation mechanism of pyruvate formate-lyase (PFL) and its role in the regulation of fermentation in Streptococcus bovis, the molecular properties and genetic expression of multifunctional alcohol dehydrogenase (ADHE) were investigated. S. bovis was found to have ADHE, which was deduced to consist of 872 amino acids with a molecular mass of 97.4 kDa. The ADHE was shown to harbor three enzyme activities: (1) alcohol dehydrogenase, (2) coenzyme-A-linked acetaldehyde dehydrogenase that catalyzes the conversion of acetyl-CoA to ethanol, and (3) PFL deactivase. Similar to Escherichia coli ADHE, S. bovis ADHE required Fe2+ for its activity. The gene encoding ADHE ( adhE) was shown to be monocistronic. The level of adhE mRNA changed in parallel with the mRNA levels of the genes encoding PFL (pfl) and PFL-activating enzyme (act) as the growth conditions changed, although these genes are independently transcribed. Synthesis of ADHE, PFL-activating enzyme, and PFL appears to be regulated concomitantly. Overexpression of ADHE did not cause a change in the formate-to-lactate ratio. It is conceivable that ADHE is not significantly involved in the reversible inactivation of active PFL under anoxic conditions. Partition of the flow from pyruvate appears to be mainly regulated by the activities of lactate dehydrogenase and PFL.  相似文献   

14.
15.
The development of tools for genetic manipulation of Clostridium ljungdahlii has increased its attractiveness as a chassis for autotrophic production of organic commodities and biofuels from syngas and microbial electrosynthesis and established it as a model organism for the study of the basic physiology of acetogenesis. In an attempt to expand the genetic toolbox for C. ljungdahlii, the possibility of adapting a lactose-inducible system for gene expression, previously reported for Clostridium perfringens, was investigated. The plasmid pAH2, originally developed for C. perfringens with a gusA reporter gene, functioned as an effective lactose-inducible system in C. ljungdahlii. Lactose induction of C. ljungdahlii containing pB1, in which the gene for the aldehyde/alcohol dehydrogenase AdhE1 was downstream of the lactose-inducible promoter, increased expression of adhE1 30-fold over the wild-type level, increasing ethanol production 1.5-fold, with a corresponding decrease in acetate production. Lactose-inducible expression of adhE1 in a strain in which adhE1 and the adhE1 homolog adhE2 had been deleted from the chromosome restored ethanol production to levels comparable to those in the wild-type strain. Inducing expression of adhE2 similarly failed to restore ethanol production, suggesting that adhE1 is the homolog responsible for ethanol production. Lactose-inducible expression of the four heterologous genes necessary to convert acetyl coenzyme A (acetyl-CoA) to acetone diverted ca. 60% of carbon flow to acetone production during growth on fructose, and 25% of carbon flow went to acetone when carbon monoxide was the electron donor. These studies demonstrate that the lactose-inducible system described here will be useful for redirecting carbon and electron flow for the biosynthesis of products more valuable than acetate. Furthermore, this tool should aid in optimizing microbial electrosynthesis and for basic studies on the physiology of acetogenesis.  相似文献   

16.
Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between -328 and -272 bp which confers retinoic acid activation. This region was also demonstrated to confer retinoic acid responsiveness on the ADH1 and ADH2 genes in heterologous promoter fusions. Within a 34-bp stretch, the ADH3 retinoic acid response element (RARE) contains two TGACC motifs and one TGAAC motif, both of which exist in RAREs controlling other genes. A block mutation of the TGACC sequence located at -289 to -285 bp eliminated the retinoic acid response. As assayed by gel shift DNA binding studies, the RARE region (-328 to -272 bp) of ADH3 bound the human retinoic acid receptor beta (RAR beta) and was competed for by DNA containing a RARE present in the gene encoding RAR beta. Since ADH catalyzes the conversion of retinol to retinal, which can be further converted to retinoic acid by aldehyde dehydrogenase, these results suggest that retinoic acid activation of ADH3 constitutes a positive feedback loop regulating retinoic acid synthesis.  相似文献   

17.
The nucleotide sequence of a 1619-bp fragment of Mycobacterium bovis BCG containing the gene that encodes an alcohol dehydrogenase (ADH) has been determined. The M(r) calculated from the deduced amino acid (aa) sequence, as well as the N terminus, are in good accordance with those determined for the ADH purified from M. bovis BCG extracts. The M. bovis BCG cloned adh gene was expressed in Escherichia coli by its own promoter and the synthesized product shows ADH activity in the butane-1-ol-NADP system. Based on comparison of the aa sequence, this enzyme belongs to the zinc-containing, long-chain alcohol/polyol dehydrogenase family, which has been primarily described in eukaryotes. Of the 22 strictly conserved residues in this group, 19 are also conserved in M. bovis BCG ADH (BCGADH).  相似文献   

18.
19.
Derivatives of Escherichia coli C were engineered to produce primarily succinate or malate in mineral salts media using simple fermentations (anaerobic stirred batch with pH control) without the addition of plasmids or foreign genes. This was done by a combination of gene deletions (genetic engineering) and metabolic evolution with over 2,000 generations of growth-based selection. After deletion of the central anaerobic fermentation genes (ldhA, adhE, ackA), the pathway for malate and succinate production remained as the primary route for the regeneration of NAD+. Under anaerobic conditions, ATP production for growth was obligately coupled to malate dehydrogenase and fumarate reductase by the requirement for NADH oxidation. Selecting strains for improved growth co-selected increased production of these dicarboxylic acids. Additional deletions were introduced as further improvements (focA, pflB, poxB, mgsA). The best succinate biocatalysts, strains KJ060(ldhA, adhE, ackA, focA, pflB) and KJ073(ldhA, adhE, ackA, focA, pflB, mgsA, poxB), produce 622-733 mM of succinate with molar yields of 1.2-1.6 per mole of metabolized glucose. The best malate biocatalyst, strain KJ071(ldhA, adhE, ackA, focA, pflB, mgsA), produced 516 mM malate with molar yields of 1.4 per mole of glucose metabolized.  相似文献   

20.
A reporter gene construct containing the Drosophila alcohol dehydrogenase (ADH) gene under regulation of the Rous sarcoma virus long terminal repeat (RSV LTR) was microinjected into mouse zygote pronuclei. ADH activity after injection of the RSV-ADH construct was visualized in cultured embryos by means of a simple histochemical enzyme assay. The RSV LTR was an efficient promoter that led to abundant ADH activity at all stages of preimplantation development. There was a high incidence of mosaicism among stained embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号