首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth kinetics of a microorganism with high affinity for liquid hydrocarbon which has a low solubility in water was investigated for Candida intermedia IFO 0761 in our previous work.6 The microorganism contained a hydrocarbon pool in and/or on the cell. The transfer of water-soluble substrates to the cell was not the rate-limiting step in the growth of C. intermedia accompanied by clump formation with liquid hydrocarbon. The operating conditions necessary for the oxygen supply for the growth were adequate for the growth of C. intermedia on n-tetradecane. The saturation kinetics was valid for the specific growth rate of C. intermedia and specific concentration of hydrocarbon per unit cell mass; the specific growth rate was expressed by the following equation:   相似文献   

2.
Candida lipolytica was grown continuously on n-hexadecane as the main source of carbon. A transient continuous-culture experiment was also conducted to investigate hydrocarbon-limited growth; the hydrocarbon feed flow rate was stopped for several hours and then resumed at a reduced steady-state flow rate. Interfacial tension, Sauter mean diameter, pseudosolubility, fraction of cells in the aqueous phase, oil-phase volume fraction, and cell concentration were measured to characterize the system. The microorganisms appear to utilize both the submicron drops and the microscopic drops. The effects of interfacial tension, pseudosolubility, and unoccupied interfacial area on the kinetics of hydrocarbon fermentation are discussed here. A conceptual model for hydrocarbon uptake is presented and discussed.  相似文献   

3.
The kinetic behaviour of Lactococcus lactis subsp. lactis biovar. diacetylactis was studied in batch culture under non-limiting conditions that allow high growth and product formation. A model based on laboratory results is proposed for growth and l-lactate fermentation. It shows the necessity for differentiating biomass into three physiological states, two active, Xg (growth + acidification) and Xng (acidification), and one inactive, Xi. The kinetic theory of the model demonstrates the non-competitive nature of fermentation end-product inhibition on growth and acidification, and describes the passage from one physiological state to another. Satisfying simulations were obtained for batch fermentations, and the use of this type of model for determining and optimizing fermentation parameters is discussed. Correspondence to: C. Diviès  相似文献   

4.
Modeling of microbial growth using nonmiscible substrate is studied when kinetics of substrate dissolution is rate limiting. When the substrate concentration is low, the growth rate is described by an analytical relation that can be identified as a Contois relationship. If the substrate concentration is greater than a critical value Scrit, the potentially useful hydrocarbon S* concentration is described by S* = Scrit/(1 + Scrit/S). A relationship was found between Scrit and the biomass concentration X. When X increased, Scrit decreased. The cell growth rate is related to a relation μ = μm[A(X/Scrit)(1 + Scrit/S) + 1]?1. This model describes the evolution of the growth rate when exponential or linear growth occurs, which is related to physico-chemical properties and hydrodynamic fermentation conditions. Experimental data to support the model are presented.  相似文献   

5.
Mycoplasma hyopneumoniae is cultured on large‐scale to produce antigen for inactivated whole‐cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint‐based genome‐scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time‐series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non‐growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model‐driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3–4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339–2347. © 2017 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.  相似文献   

6.
Continuous fermentation experiments in a well-stirred fermentor with Saccharomyces cerevisiae cells immobilized in Ca-alginate beads of small diameter (approx. 1 mm) have been performed in order to discover their intrinsic fermentation kinetics, and compare them to the fermentation kinetics for free cells, by fitting both sets of results to the same model. The results show similar kinetic parameters for free and immobilized cells. The changes in cell concentration inside the beads and microscopical observations of transverse sections throughout the experiments, allowed discernment of two different scenarios of cell growth inside the beads: low cell density and fully developed growth. Correspondence to: F. Gòdia  相似文献   

7.
Because of the importance of the drop she distribution and interfacial area of the dispersed liquid phase in hydrocarbon fermentations, experiments were carried out to determine the drop size distribution and the interfacial area during batch fermentations of Candida lipolytica on gas oil and on n-hexadecane dissolved in dewaxed gas oil. The effects of cell concentration and dispersed phase volume fraction on size distribution and interfacial area were investigated. Measurements of interfacial tensions, densities, viscosities, and fatty acid concentrations were also made. The results show that the size distribution is skewed and that the Sauter mean diameter is in the range of 10 to 30 μ. Both the Sauter mean diameter and the interfacial area increased during the course of a batch fermentation; however, they decreased at the end of the fermentation. The interfacial area also increased with inoculum size.  相似文献   

8.
The growth behaviour of Schwanniomyces castellii in slurry fermentation systems using untreated potato starch as substrate was studied in order to asses the eventual effect of the initial concentration of substrate (So) on cell growth rate. By applying the elementary balance method in combination with a Monod-type kinetic equation it was possible to formulate not only an unstructured model, but also the stoichiometry for such a yeast fermentation process. From a kinetic viewpoint, the Monod model was found to be redundant with respect to the pseudo-first order one, it being impossible to discriminate the contribution of v M and K S on the overall fermentation kinetics. Whereas the main yield coefficients appeared to be independent of S O, the pseudo-first order rate constant was found to be inversely proportional to S O. Therefore, cell growth appears to be controlled by the initial amount of amylolytic enzymes, that is to some extent proportional to the inoculum size, instead of the initial concentration of potato starch, at least within the experimental range of 3 to 30 g dm3.  相似文献   

9.
Salt-tolerant aromatic yeast is an important microorganism arising from the solid state fermentation of soy sauce. The fermentation kinetics of volatile esters by Candida etchellsii was studied in a batch system. The data obtained from the fermentation were used for determining the kinetic parameters of the model. Batch experimental results at four NaCl levels (180, 200, 220, and 240 g/L) were used to formulate the parameter estimation model. The kinetic parameters of the model were optimized by specifically designed Runge-Kutta Genetic Algorithms (GA). The resulting mathematical model for volatile ester production, cell growth and glucose consumption simulates the experimental data well. The resulting new model was capable of explaining the behavior of volatile ester fermentation. The optimized parameters (μo, X max, K i, α, β, Y X/S, m, and Y P/S) were characterized by a correlation of functions assuming salinity dependence. The kinetic models optimized by GA describe the batch fermentation process adequately, as demonstrated by our experimental results.  相似文献   

10.
利用分批发酵研究了灵芝(Ganoderma lucidum)胞外多糖的合成特性,结果表明Ganoderma lucidum多糖合成和菌体生长呈部分生长关联型。菌体干重、胞外多糖分别达到15.56g·L-1<、3.02g·L-1<,胞外多糖对细胞干重得率系数(Yp/x)为0.19。根据分批发酵试验结果采用Logistic方程、Luedeking-Piret方程和类似Luedeking-Piret方程,得到了描述灵芝生长、胞外多糖以及葡萄糖底物消耗分批发酵动力学模型。同时在初始葡萄糖变化较大范围内,试验数据与模型预测值进行了比较拟合,平均相对误差小于5%,表现出很好的适用性。表明该动力学模型对指导灵芝胞外多糖的发酵生产具有实际意义。  相似文献   

11.
灵芝胞外多糖分批发酵动力学模型   总被引:7,自引:0,他引:7  
利用分批发酵研究了灵芝(Ganoderma lucidum)胞外多糖的合成特性,结果表明Ganodermalucidum多糖合成和菌体生长呈部分生长关联型。菌体干重、胞外多糖分别达到15.56g·L-1、3.02g·L-1,胞外多糖对细胞干重得率系数(Yp/x)为0.19。根据分批发酵试验结果采用Logistic方程、Luedeking-Piret方程和类似Luedeking-Piret方程,得到了描述灵芝生长、胞外多糖以及葡萄糖底物消耗分批发酵动力学模型。同时在初始葡萄糖变化较大范围内,试验数据与模型预测值进行了比较拟合,平均相对误差小于5%,表现出很好的适用性。表明该动力学模型对指导灵芝胞外多糖的发酵生产具有实际意义。  相似文献   

12.
The results achieved by the cultivation of the yeast. Candida lipolytica on gas oil are referred. By using a distillation fraction of gas oil distilling between 180–400°C, containing 10–20% of n-alkanes, the optimal condition for biomass production and deparaffination were estimated for various dilution rates and various amounts of gas oil in the medium. The main factor, which influences the yield coefficient by hydrocarbon fermentation is the polyauxie of the hydrocarbon substrate. The penetration of dispersed hydrocarbons into the yeast cell is demonstrated on electron micrographs and the velocity and reversibility of this process is estimated by using tritium-traced hexadecane.  相似文献   

13.
In hydrocarbon fermentation, the efficiency of hydrocarbon uptake by cells ins one of the keys to the economical production of single-cell protein. This work is concerned with characterization of cultures with two liquid phases for understanding the hydrocarbon uptake process by cells. Batch cultivation of Candida lipolytica was carried out in shaking flasks and in a tower fermentor with motionless mixers. Micorscopic observation and cell and hydrocarbon concentration distribution in batch cultivation showed that some cells are attached to the large oil drops ad others are free from them. Interfacial tension between oil and water and Sauter mean drop size decreased as cultivation proceeded. On the basis of the experimental results, the process of hydrocarbon uptake by cells is discussed.  相似文献   

14.
A simple, accurate model capable of predicting cell growth and methanol utilization during the mixed substrate fed-batch fermentation of MutS recombinant Pichia pastoris was developed and was used to design an exponential feeding strategy for mixed substrate fed-batch fermentation at a constant specific growth rate. Mixed substrate feeding has been shown to boost productivity in recombinant fed-batch culture of P. pastoris, while fixed growth rate exponential feeding during fed-batch culture is a useful tool in process optimization and control.  相似文献   

15.
In this work, an immobilization method for polymer-levan production by a non-flocculating Z mobilis culture was developed. The extent of cell attachment to the stainless steel wire surface, culture growth and product synthesis were described. It was established that during short-term passive immobilization of non-flocculation Z mobilis cells on a stainless steel wire surface, sufficient amounts of biomass for proper levan and ethano fermentation could not be obtained. Adherence of cells was improved by pressing the paste-like biomass within stainless steel spheres knitted from wire with subsequent dehydration. Biomass fixed in metal spheres was used for repeated batch fermentation of levan. The activation period of cells within wire spheres (WS) was 48 h in duration. During this time, cell growth stabilized at production levels of ethanol and levan of Qeth = 1.238 g/l × h and qeth = 0.47 g/l × h; Qeth = 0.526 g/l × h and qeth = 0.20 g/l × h. Five stable fermentation cycles were realized using one wire sphere inoculum, and maintaining a stable ratio of 2.4 of biomass suspended in the medium to biomass fixed in the sphere. Using fixed Z mobilis biomass in the WS, the total amount of inoculum could be reduced for batch fermentation. Large plaited wire spheres with biomass may have potential in fermentation in viscous systems, including levan production.  相似文献   

16.
The capability of the yeast Lodderomyces elongisporus to utilize solved paraffins in fermentation brothes could be demonstrated. The growth rate of this microorganism in the case of utilization of solved paraffins is higher as the most known dates. The saturated concentrations of solved hydrocarbons in the fermentation brothes are higher as in real solvent systems. The part of the solved hydrocarbon is a function of the power input, the diameter of oil drops, the fermentation conditions and the length of the paraffin chain. The organism growth rate depends on the solved paraffin concentration in the fermentation broth. This fact is one of the reasons for the variability of the consumption coefficients by utilization of paraffins with different chain lenghts. The results confirm the assumption that the transport of the paraffins from the oil drops to the cells takes place over water soluble phase.  相似文献   

17.
Nutrient cross‐feeding can stabilize microbial mutualisms, including those important for carbon cycling in nutrient‐limited anaerobic environments. It remains poorly understood how nutrient limitation within natural environments impacts mutualist growth, cross‐feeding levels and ultimately mutualism dynamics. We examined the effects of nutrient limitation within a mutualism using theoretical and experimental approaches with a synthetic anaerobic coculture pairing fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris. In this coculture, E. coli and R. palustris resemble an anaerobic food web by cross‐feeding essential carbon (organic acids) and nitrogen (ammonium) respectively. Organic acid cross‐feeding stemming from E. coli fermentation can continue in a growth‐independent manner during nitrogen limitation, while ammonium cross‐feeding by R. palustris is growth‐dependent. When ammonium cross‐feeding was limited, coculture trends changed yet coexistence persisted under both homogenous and heterogenous conditions. Theoretical modelling indicated that growth‐independent fermentation was crucial to sustain cooperative growth under conditions of low nutrient exchange. In contrast to stabilization at most cell densities, growth‐independent fermentation inhibited mutualistic growth when the E. coli cell density was adequately high relative to that of R. palustris. Thus, growth‐independent fermentation can conditionally stabilize or destabilize a mutualism, indicating the potential importance of growth‐independent metabolism for nutrient‐limited mutualistic communities.  相似文献   

18.
Corynebacterium glutamicum is commonly used for lysine production. In the last decade, several metabolic engineering approaches have been successfully applied to C. glutamicum. However, only few studies have been focused on the kinetics of growth and lysine production. Here, we present a phenomenological model that captures the growth and lysine production during different phases of fermentation at various initial dextrose concentrations. The model invokes control coefficients to capture the dynamics of lysine and trehalose synthesis. The analysis indicated that maximum lysine productivity can be obtained using 72 g/L of initial dextrose concentration in the media, while growth was optimum at 27 g/L of dextrose concentration. The predictive capability was demonstrated through a two-stage fermentation strategy to enhance the productivity of lysine by 1.5 times of the maximum obtained in the batch fermentation. Two-stage fermentation indicated that the kinetic model could be further extended to predict the optimal feeding strategy for fed-batch fermentation.  相似文献   

19.
Summary Candida lipolytica is shown to produce an extracellular polymer with emulsifying properties when grown on n-tetradecane or a mixture of linear hydrocarbons. A device for biosurfactant isolation is presented. The polymers recovered from the fermentation broth were found to be complex molecules with a protein, a lipid and a carbohydrate moiety. Their surface active properties suggest a possible role in hydrocarbon uptake by cells. Effectively, the addition of crude polymer resulted in an enhancement of respiration rate which was dependent on n-alkane concentration with glucose grown cells. Likewise in batch culture, maximum growth rate, cell productivity and yield were increased by the presence of the biosurfactant.  相似文献   

20.
Cultivation ofCandida lipolytica 4-1 on hydrocarbons   总被引:1,自引:0,他引:1  
The length of the carbon chain of the hydrocarbon substrate affects markedly the fatty acid composition in the cell lipids of the yeastCandida lipolytica 4-1. During cell growth onn-hexadecane dissolved in deparaffinated gas oil, direct incorporation of palmitic acid into lipids takes place. During growth onn-dodecane, on the other hand, an immediate synthesis and incorporation into oleic acid is observed. The cells contain only little lauric acid (maximum 11%). During fermentation of then-alkanes dissolved in deparaffinated gas oil which contains a mixture of isoalkanes, alkylated aromatic and cyclic hydrocarbons, free fatty acids accumulate in the oil phase. The fatty acid composition in the oil differs markedly according to the growth stage of cells. At the beginning of the logarithmic phase of growth, the fatty acid composition in the oil phase reflects the acid composition in the cell lipids, toward the end of cell growth, the cooxidation products of the isoalkanes accumulate. The aqueous phase contains lower fatty acids and cooxidation products of isoalkanes and of alkylated aromatic and alicyclic hydrocarbons. Part III. Oxidation and Utilization of Individual Pure Hydrocarbons—seeFolia Microbiol. 14,334 (1969).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号