首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The yeast snoRNP protein, NOP1, is structurally and functionally homologous to vertebrate fibrillarin and is essential for viability. A conditionally lethal allele was constructed by placing NOP1 expression under the control of a GAL promoter. Growth on glucose medium results in the depletion of NOP1 over several generations, during which cell growth is progressively impaired. Pulse labelling of proteins shows that NOP1 depleted strains are greatly impaired in the production of cytoplasmic ribosomes, and they have a reduced level of rRNA. Northern hybridization and pulse-chase labelling of pre-rRNA show a progressive impairment of all pre-rRNA processing steps. The pathway leading to 18S rRNA is particularly affected. Methylation of pre-rRNA is concomitantly impaired and unmethylated pre-rRNA accumulates and is not processed over long periods. NOP1 depletion does not prevent the accumulation of seven snoRNAs tested including U3; the levels of two species, U14 and snR190, decline. The snoRNAs synthesized in the absence of NOP1 retain TMG cap structures. Subnuclear fractionation and immunocytochemistry indicate that they continue to be localized in the nucleolus.  相似文献   

2.
3.
4.
Glycosylphosphatidylinositols (GPIs) are critical for membrane anchoring and intracellular transport of certain secretory proteins. GPIs have a conserved trimannosyl core bearing a phosphoethanolamine (EthN-P) moiety on the third mannose (Man-3) through which the glycolipid is linked to protein, but diverse GPI precursors with EthN-Ps on Man-1 and Man-2 have also been described. We report on two essential yeast genes whose products are required late in GPI assembly. GPI11 (YDR302w) encodes a homologue of human Pig-Fp, a protein implicated in the addition of EthN-P to Man-3. PIG-F complements the gpi11 deletion, but the rescued haploids are temperature sensitive. Abolition of Gpi11p or Pig-Fp function in GPI11 disruptants blocks GPI anchoring and formation of complete GPI precursors and leads to accumulation of two GPIs whose glycan head groups contain four mannoses but differ in the positioning and number of side chains, probably EthN-Ps. The less polar GPI bears EthN-P on Man-2, whereas the more polar lipid has EthN-P on Man-3. The latter finding indicates that Gpi11p is not required for adding EthN-P to Man-3. Gpi13p (YLL031cp), a member of a family of phosphoryltransferases, is a candidate for the enzyme responsible for adding EthN-P to Man-3. Depletion of Gpi13p in a Gpi11p-defective strain prevents formation of the GPI bearing EthN-P on Man-3, and Gpi13p-deficient strains accumulate a Man(4)-GPI isoform that bears EthN-P on Man-1. We further show that the lipid accumulation phenotype of Gpi11p-deficient cells resembles that of cells lacking Gpi7p, a sequence homologue of Gpi13p known to add EthN-P to Man-2 of a late-stage GPI precursor. This result suggests that in yeast a Gpi11p-deficiency can affect EthN-P addition to Man-2 by Gpi7p, in contrast to the Pig-Fp defect in mammalian cells, which prevents EthN-P addition to Man-3. Because Gpi11p and Pig-Fp affect EthN-P transfer to Man-2 and Man-3, respectively, these proteins may act in partnership with the GPI-EthN-P transferases, although their involvement in a given EthN-P transfer reaction varies between species. Possible roles for Gpi11p in the supply of the EthN-P donor are discussed. Because Gpi11p- and Gpi13p-deficient cells accumulate isoforms of Man(4)-GPIs with EthN-P on Man-2 and on Man-1, respectively, and because the GPIs that accumulate in Gpi11p-defective strains are likely to have been generated independently of one another, we propose that the yeast GPI assembly pathway is branched.  相似文献   

5.
The genome of the fission yeast Schizosaccharomyces pombe encodes for 17 protein kinases that are essential for viability. Studies of the essential kinases often require the use of mutant strains carrying conditional alleles. To inactivate these kinases conditionally, we applied a recently developed chemical genetic strategy. The mutation of a single residue in the ATP-binding pocket confers sensitivity to small-molecule inhibitors, allowing for specific inactivation of the modified kinase. Using this approach, we constructed conditional analog-sensitive alleles of 13 essential protein kinases in the fission yeast S. pombe.  相似文献   

6.
Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins involves the action of a GPI trans-amidase, which replaces the C-terminal GPI signal sequence (GPI-SS) of the primary translation product with a preformed GPI lipid. The transamidation depends on a complex of four proteins, Gaa1p, Gpi8p, Gpi16p and Gpi17p. Although the GPI anchoring pathway is conserved throughout the eukaryotic kingdom, it has been reported recently that the GPI-SS of human placental alkaline phosphatase (hPLAP) is not recognized by the yeast transamidase, but is recognized in yeast that contain the human Gpi8p homologue. This finding suggests that Gpi8p is intimately involved in the recognition of GPI precursor proteins and may also be responsible for the subtle taxon-specific differences in transamidase specificity that sometimes prevent the efficient GPI anchoring of heterologously expressed GPI proteins. Here, we confirm that the GPI signal sequence of hPLAP is indeed not recognized by the yeast GPI-anchoring machinery. However, in our hands, GPI attachment cannot be restored by the co-expression of human Gpi8p in yeast cells under any circumstances.  相似文献   

7.
A method for repeated PCR-mediated promoter replacement in the yeast Saccharomyces cerevisiae is described. It was proposed to use the DNA fragment comprising the marker gene that enables both positive and negative selection (a selectable/counter-selectable marker) surrounded by direct repeats of the desired promoter as a promoter replacement cassette. This fragment is integrated upstream of the target gene because of PCR-added terminal sequences for homologous recombination with the target locus. Subsequent marker excision via homologous recombination between the copies of the two promoters leaves one copy of the desired promoter upstream of the target genes, without any heterologous scar sequence. To test this method, a set of plasmids bearing the S. cerevisiae URA3 gene surrounded by two copies of the ADH1 or PGK1 promoter was constructed. Using these cassettes, the native promoters of the GSH1 and GSH2 genes were replaced in the ura3Δ0 recipient strains. The proposed method is useful for research applications due to simple marker excision, and for construction of “self-cloning” industrial strains, because no heterologous DNA is retained in the genome of the resulting strain after marker excision.  相似文献   

8.
We have created a resource to rapidly map genetic traits to specific chromosomes in yeast. This mapping is done using a set of 16 yeast strains each containing a different chromosome with a conditionally functional centromere. Conditional centromere function is achieved by integration of a GAL1 promoter in cis to centromere sequences. We show that the 16 yeast chromosomes can be individually lost in diploid strains, which become hemizygous for the destabilized chromosome. Interestingly, most 2n - 1 strains endoduplicate and become 2n. We also demonstrate how chromosome loss in this set of strains can be used to map both recessive and dominant markers to specific chromosomes. In addition, we show that this method can be used to rapidly validate gene assignments from screens of strain libraries such as the yeast gene disruption collection.  相似文献   

9.
10.
The intracellular pathogen Legionella pneumophila translocates a large number of effector proteins into host cells via the Icm/Dot type-IVB secretion system. Some of these effectors were shown to cause lethal effect on yeast growth. Here we characterized one such effector (LecE) and identified yeast suppressors that reduced its lethal effect. The LecE lethal effect was found to be suppressed by the over expression of the yeast protein Dgk1 a diacylglycerol (DAG) kinase enzyme and by a deletion of the gene encoding for Pah1 a phosphatidic acid (PA) phosphatase that counteracts the activity of Dgk1. Genetic analysis using yeast deletion mutants, strains expressing relevant yeast genes and point mutations constructed in the Dgk1 and Pah1 conserved domains indicated that LecE functions similarly to the Nem1-Spo7 phosphatase complex that activates Pah1 in yeast. In addition, by using relevant yeast genetic backgrounds we examined several L. pneumophila effectors expected to be involved in phospholipids biosynthesis and identified an effector (LpdA) that contains a phospholipase-D (PLD) domain which caused lethal effect only in a dgk1 deletion mutant of yeast. Additionally, LpdA was found to enhance the lethal effect of LecE in yeast cells, a phenomenon which was found to be dependent on its PLD activity. Furthermore, to determine whether LecE and LpdA affect the levels or distribution of DAG and PA in-vivo in mammalian cells, we utilized fluorescent DAG and PA biosensors and validated the notion that LecE and LpdA affect the in-vivo levels and distribution of DAG and PA, respectively. Finally, we examined the intracellular localization of both LecE and LpdA in human macrophages during L. pneumophila infection and found that both effectors are localized to the bacterial phagosome. Our results suggest that L. pneumophila utilize at least two effectors to manipulate important steps in phospholipids biosynthesis.  相似文献   

11.
We have engineered a system that holds potential for use as a safety switch in genetically modified yeasts. Human apoptotic factor BAX (no homolog in yeast), under the control of the FBP1 (gluconeogenesis enzyme) promoter, was conditionally expressed to induce yeast cell apoptosis after glucose depletion. Such systems might prove useful for the safe use of genetically modified organisms.  相似文献   

12.
Aim: To construct a self‐cloning brewer’s yeast that can minimize the unfavourable flavours caused by oxidation and certain kinds of sulfur compounds. Methods and Results: DNA fragments of a high‐expression promoter from the TDH3 gene originating from Saccharomyces cerevisiae were integrated into the promoter regions of the S. cerevisiae‐type and Saccharomyces bayanus‐type SSU1 genes of bottom‐fermenting brewer’s yeast. PCR and sequencing confirmed the TDH3 promoter was correctly introduced into the SSU1 regions of the constructed yeasts, and no foreign DNA sequences were found. Using the constructed yeasts, the concentration of sulfite in fermenting wort was higher when compared with the parent strain. In addition, the concentrations of hydrogen sulfide, 3‐methyl‐2‐buten‐1‐thiol (MBT) and 2‐mercapto‐3‐methyl‐1‐butanol (2M3MB) were lower when compared with the parent strain. Conclusion: We successfully constructed a self‐cloning brewer’s yeast with high SSU1 expression that enhanced the sulfite‐excreting ability and diminished the production ability of hydrogen sulfide, MBT and 2M3MB. Significance and Impact of the Study: The self‐cloning brewer’s yeast with high SSU1 expression would contribute to the production of superior quality beer with a high concentration of sulfite and low concentrations of hydrogen sulfide, MBT and 2M3MB.  相似文献   

13.
Candida albicans ubiquitin genes UBI3 and UBI4 encode a ubiquitin-hybrid protein involved in ribosome biogenesis and polyubiquitin, respectively. In this work we show that UBI3 and UBI4 promoter regions confer differential expression consistent with the function of their encoded gene products. Hybrid genes were constructed containing the SUC2 coding region under the control of UBI3 or UBI4 promoters in the yeast vector pLC7. Invertase production in Saccharomyces cerevisiae transformants was differentially regulated: the UBI4 promoter was induced by stress conditions (thermal upshift and/or starvation) whereas the UBI3 promoter conferred constitutive invertase production in growing yeast cells. These results indicate that the UBI4 promoter is regulated by stress-response signaling pathways, whereas the UBI3 promoter is controlled according to the requirement for protein synthesis to support cell growth. Electronic Publication  相似文献   

14.
The expression of biodesulfurization genes (dsz) in Rhodococcus erythropolis strain KA2-5-1 is repressed by sulfate which is the product of biodesulfurization. The application of a sulfate non-repressible promoter could be effective in enhancing biodesulfurization. A promoter-probe transposon was constructed using the promoterless, red-shifted green fluorescence protein gene (rsgfp). A 340 bp putative promoter element, designated kap1, was isolated from a strain KA2-5-1 recombinant that had shown high fluorescence intensity. The activity of kap1 was not affected by 1 mM sulfate. It gave about a 2-fold greater activity than the 16S ribosomal RNA promoter in R. erythropolis strain KA2-5-1 and is therefore useful for expressing desulfurization genes in rhodococcal strains.  相似文献   

15.
The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene ( LIP2 ) was monitored using a LIP2 -β-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.  相似文献   

16.
The sequences of alleles Gpil-s a and Gpi1-s b at the glucose phosphate isomerase structural locus have been determined from cDNA of the mouse inbred strains 101/H Gpi1-s a and C3H/HeH Gpi1-s b by TR PCR and direct sequencing of the amplified products. Four individual nucleotide differences were observed between the two alleles. The difference at amino acid residue 94, (Gpi1-s a GAT Asp, Gpi1-s b AAT Asn) may account for the differing electrophoretic migration, isoelectric point, and thermostability of the two alleles. Two of the other observed differences in the coding region (amino acid residue 12 Leu, Gpi1-s a CTC, Gpi1-s b CTG and amino acid residue 17 Arg, Gpi1-s a CGC, Gpi1-s b CGT) are silent and do not affect the predicted amino acid residues on translation. The fourth observed difference is located within the 3 noncoding sequences of the cDNA. The change at amino acid residue 94 is associated with the presence of a Hinf1 restriction site in Gpi1-s b, which is absent in Gpi1-s a, and may be a useful method for determining this marker.  相似文献   

17.
The gene encoding clathrin heavy chain in Saccharomyces cerevisiae (CHC1) is not essential for growth in most laboratory strains tested. However, in certain genetic backgrounds, a deletion of CHC1 (chc1) results in cell death. Lethality in these chc1 strains is determined by a locus designated SCD1 (suppressor of clathrin deficiency) which is unlinked to CHC1 (S. K. Lemmon and E. W. Jones, Science 238:504-509, 1987). The lethal allele of SCD1 has no effect on cell growth when the wild-type version of CHC1 is present. This result led to the proposal that most yeast strains are viable in the absence of clathrin heavy chain because they possess the SCD1 suppressor. Discovery of another yeast strain that cannot grow without clathrin heavy chain has allowed us to perform a genetic test of the suppressor hypothesis. Genetic crosses show that clathrin-deficient lethality in the latter strain is conferred by a single genetic locus (termed CDL1, for clathrin-deficient lethality). By constructing strains in which CHC1 expression is regulated by the GAL10 promoter, we demonstrate that the lethal alleles of SCD1 and CDL1 are recessive. In both cases, very low expression of CHC1 can allow cells to escape from lethality. Genetic complementation and segregation analyses indicate that CDL1 and SCD1 are distinct genes. The lethal CDL1 allele does not cause a defect in the secretory pathway of either wild-type or clathrin heavy-chain-deficient yeast. A systematic screen to identify mutants unable to grow in the absence of clathrin heavy chain uncovered numerous genes similar to SCD1 and CDL1. These findings argue against the idea that viability of chc1 cells is due to genetic suppression, since this hypothesis would require the existence of a large number of unlinked genes, all of which are required for suppression. Instead, lethality appears to be a common, nonspecific occurrence when a second-site mutation arises in a strain whose cell growth is already severely compromised by the lack of clathrin heavy chain.  相似文献   

18.
The PRS gene family in Saccharomyces cerevisiae consists of five genes each capable of encoding a 5-phosphoribosyl-1(alpha)-pyrophosphate synthetase polypeptide. To gain insight into the functional organization of this gene family we have constructed a collection of strains containing all possible combinations of disruptions in the five PRS genes. Phenotypically these deletant strains can be classified into three groups: (i) a lethal phenotype that corresponds to strains containing a double disruption in PRS2 and PRS4 in combination with a disruption in either PRS1 or PRS3; simultaneous deletion of PRS1 and PRS5 or PRS3 and PRS5 are also lethal combinations; (ii) a second phenotype that is encountered in strains containing disruptions in PRS1 and PRS3 together or in combination with any of the other PRS genes manifests itself as a reduction in growth rate, enzyme activity, and nucleotide content; (iii) a third phenotype that corresponds to strains that, although affected in their phosphoribosyl pyrophosphate-synthesizing ability, are unimpaired for growth and have nucleotide profiles virtually the same as the wild type. Deletions of PRS2, PRS4, and PRS5 or combinations thereof cause this phenotype. These results suggest that the polypeptides encoded by the members of the PRS gene family may be organized into two functional entities. Evidence that these polypeptides interact with each other in vivo was obtained using the yeast two-hybrid system. Specifically PRS1 and PRS3 polypeptides interact strongly with each other, and there are significant interactions between the PRS5 polypeptide and either the PRS2 or PRS4 polypeptides. These data suggest that yeast phosphoribosyl pyrophosphate synthetase exists in vivo as multimeric complex(es).  相似文献   

19.
Aims: To determine the chromosomal location and entire sequence of Lg-FLO1, the expression of which causes the flocculation of bottom-fermenting yeast. Methods and Results: Two cosmid clones carrying DNA from a bottom-fermenting yeast chromosome VIII right-arm end were selected by colony hybridization. Sequencing revealed that the clones contained DNA derived from a Saccharomyces cerevisiae type chromosome VIII and a Saccharomyces bayanus type chromosome VIII, both from bottom-fermenting yeast. Conclusions: Lg-FLO1 is located on the S. cerevisiae type chromosome VIII at the same position as the FLO5 gene of the laboratory yeast S. cerevisiae S288c. The unique chromosome VIII structure of bottom-fermenting yeast is conserved among other related strains. FLO5 and Lg-FLO1 promoter sequences are identical except for the presence of three 42 bp repeats in the latter, which are associated with gene activity. Flocculin genes might have been generated by chromosomal recombination at these repeats. Significance and Impact of the Study: This is the first report of the exact chromosomal location and entire sequence of Lg-FLO1. This information will be useful in the brewing industry for the identification of normal bottom-fermenting yeast. Moreover, variations in the FLO5 locus among strains are thought to reflect yeast evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号